|   | 
Details
   web
Records
Author Froy, O.; Gotter, A.L.; Casselman, A.L.; Reppert, S.M.
Title Illuminating the circadian clock in monarch butterfly migration Type Journal Article
Year 2003 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume (down) 300 Issue 5623 Pages 1303-1305
Keywords Animals; *Animal Migration; Biological Clocks/*physiology; Butterflies/genetics/*physiology; Circadian Rhythm/*physiology; Cloning, Molecular; Darkness; Flight, Animal; Light; Nuclear Proteins/genetics/physiology; Period Circadian Proteins; Solar System; Ultraviolet Rays; butterflies; monarch
Abstract Migratory monarch butterflies use a time-compensated Sun compass to navigate to their overwintering grounds in Mexico. Here, we report that constant light, which disrupts circadian clock function at both the behavioral and molecular levels in monarchs, also disrupts the time-compensated component of flight navigation. We further show that ultraviolet light is important for flight navigation but is not required for photic entrainment of circadian rhythms. Tracing these distinct light-input pathways into the brain should aid our understanding of the clock-compass mechanisms necessary for successful migration.
Address Department of Neurobiology, University of Massachusetts Medical School, LRB-728, 364 Plantation Street, Worcester, MA 01605, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:12764200 Approved no
Call Number IDA @ john @ Serial 1072
Permanent link to this record
 

 
Author Martinez-Nicolas, A.; Ortiz-Tudela, E.; Madrid, J.A.; Rol, M.A.
Title Crosstalk between environmental light and internal time in humans Type Journal Article
Year 2011 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume (down) 28 Issue 7 Pages 617-629
Keywords Adolescent; Biological Clocks/*physiology; Circadian Rhythm/*physiology; Cues; *Environment; Female; Humans; *Light; Male; Sleep; Spain; Temperature; *Time; Young Adult
Abstract Daily exposure to environmental light is the most important zeitgeber in humans, and all studied characteristics of light pattern (timing, intensity, rate of change, duration, and spectrum) influence the circadian system. However, and due to lack of current studies on environmental light exposure and its influence on the circadian system, the aim of this work is to determine the characteristics of a naturalistic regimen of light exposure and its relationship with the functioning of the human circadian system. Eighty-eight undergraduate students (18-23 yrs) were recruited in Murcia, Spain (latitude 38 degrees 01'N) to record wrist temperature (WT), light exposure, and sleep for 1 wk under free-living conditions. Light-exposure timing, rate of change, regularity, intensity, and contrast were calculated, and their effects on the sleep pattern and WT rhythm were then analyzed. In general, higher values for interdaily stability, relative amplitude, mean morning light, and light quality index (LQI) correlated with higher interdaily stability and relative amplitude, and phase advance in sleep plus greater stability in WT and phase advance of the WT circadian rhythm. On the other hand, a higher fragmentation of the light-exposure rhythm was associated with more fragmented sleep. Naturalistic studies using 24-h ambulatory light monitoring provide essential information about the main circadian system input, necessary for maintaining healthy circadian tuning. Correcting light-exposure patterns accordingly may help prevent or even reverse health problems associated with circadian disruption.
Address Chronobiology Laboratory, Department of Physiology, University of Murcia, Murcia, Spain
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:21793693 Approved no
Call Number IDA @ john @ Serial 302
Permanent link to this record
 

 
Author Kovac, J.; Husse, J.; Oster, H.
Title A time to fast, a time to feast: the crosstalk between metabolism and the circadian clock Type Journal Article
Year 2009 Publication Molecules and Cells Abbreviated Journal Mol Cells
Volume (down) 28 Issue 2 Pages 75-80
Keywords Human Health; Animals; Biological Clocks/*physiology; CLOCK Proteins/genetics/metabolism; Circadian Rhythm/*physiology; Energy Metabolism/*physiology; Gene Expression Regulation; Homeostasis; Humans; Period Circadian Proteins/genetics/metabolism; Time Factors
Abstract The cyclic environmental conditions brought about by the 24 h rotation of the earth have allowed the evolution of endogenous circadian clocks that control the temporal alignment of behaviour and physiology, including the uptake and processing of nutrients. Both metabolic and circadian regulatory systems are built upon a complex feedback network connecting centres of the central nervous system and different peripheral tissues. Emerging evidence suggests that circadian clock function is closely linked to metabolic homeostasis and that rhythm disruption can contribute to the development of metabolic disease. At the same time, metabolic processes feed back into the circadian clock, affecting clock gene expression and timing of behaviour. In this review, we summarize the experimental evidence for this bimodal interaction, with a focus on the molecular mechanisms mediating this exchange, and outline the implications for clock-based and metabolic diseases.
Address Circadian Rhythms Group, Max Planck Institute of Biophysical Chemistry, 37077, Gottingen, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1016-8478 ISBN Medium
Area Expedition Conference
Notes PMID:19714310 Approved no
Call Number LoNNe @ kagoburian @ Serial 772
Permanent link to this record
 

 
Author Kempinger, L.; Dittmann, R.; Rieger, D.; Helfrich-Forster, C.
Title The nocturnal activity of fruit flies exposed to artificial moonlight is partly caused by direct light effects on the activity level that bypass the endogenous clock Type Journal Article
Year 2009 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume (down) 26 Issue 2 Pages 151-166
Keywords ARNTL Transcription Factors; Animals; Basic Helix-Loop-Helix Transcription Factors/genetics/metabolism; Behavior, Animal/physiology; Biological Clocks/*physiology; CLOCK Proteins; Circadian Rhythm/*physiology; Darkness; Drosophila Proteins/genetics/metabolism; Drosophila melanogaster/*physiology; *Light; *Moon; Motor Activity/*physiology; Nuclear Proteins/genetics/metabolism; Period Circadian Proteins; Photoperiod; Transcription Factors/genetics/metabolism
Abstract Artificial moonlight was recently shown to shift the endogenous clock of fruit flies and make them nocturnal. To test whether this nocturnal activity is partly due to masking effects of light, we exposed the clock-mutants per(01), tim(01), per(01);tim(01), cyc(01), and Clk(JRK) to light/dark and light/dim-light cycles and determined the activity level during the day and night. We found that under moonlit nights, all clock mutants shifted their activity significantly into the night, suggesting that this effect is independent of the clock. We also recorded the flies under continuous artificial moonlight and darkness to judge the effect of dim constant light on the activity level. All mutants, except Clk(JRK) flies, were significantly more active under artificial moonlight conditions than under complete darkness. Unexpectedly, we found residual rhythmicity of per(01) and especially tim(01) mutants under these conditions, suggesting that TIM and especially PER retained some activity in the absence of its respective partner. Nevertheless, as even the double mutants and the cyc(01) and Clk(JRK) mutants shifted their activity into the night, we conclude that dim light stimulates the activity of fruit flies in a clock-independent manner. Thus, nocturnal light has a twofold influence on flies: it shifts the circadian clock, and it increases nocturnal activity independently of the clock. The latter was also observed in some primates by others and might therefore be of a more general validity.
Address Institute of Zoology, University of Regensburg, Regensburg, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:19212834 Approved no
Call Number IDA @ john @ Serial 113
Permanent link to this record
 

 
Author Evans, J.A.; Elliott, J.A.; Gorman, M.R.
Title Dim nighttime illumination accelerates adjustment to timezone travel in an animal model Type Journal Article
Year 2009 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume (down) 19 Issue 4 Pages R156-7
Keywords *Adaptation, Physiological; Animals; Behavior, Animal/physiology; Biological Clocks/*physiology; Circadian Rhythm/*physiology; Cricetinae; Humans; *Lighting; Mesocricetus; Mice; Motor Activity/physiology; Phodopus; *Photoperiod; Time Factors
Abstract Jetlag reflects a mismatch between local and circadian time following rapid timezone travel [1]. Appropriately timed bright light can shift human circadian rhythms but recovery is slow (e.g., 1-2 days per timezone). Most symptoms subside after resynchronization, but chronic jetlag may have enduring negative effects [2], including even accelerated mortality in mice [3]. Melatonin, prescription drugs, and/or exercise may help shift the clock but, like bright light, require complex schedules of application [1]. Thus, there is a need for more efficient and practical treatments for addressing jetlag. In contrast to bright daytime lighting, nighttime conditions have received scant attention. By incorporating more naturalistic nighttime lighting comparable in intensity to dim moonlight, we demonstrate that recovery after simulated jetlag is accelerated when nights are dimly lit rather than completely dark.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:19243688 Approved no
Call Number IDA @ john @ Serial 152
Permanent link to this record