toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sherman, H.; Gutman, R.; Chapnik, N.; Meylan, J.; le Coutre, J.; Froy, O. url  doi
openurl 
  Title Caffeine alters circadian rhythms and expression of disease and metabolic markers Type Journal Article
  Year (down) 2011 Publication The International Journal of Biochemistry & Cell Biology Abbreviated Journal Int J Biochem Cell Biol  
  Volume 43 Issue 5 Pages 829-838  
  Keywords Human Health; Animals; Biological Markers/blood/metabolism; Body Weight/drug effects/physiology; Caffeine/*pharmacology; Caloric Restriction; Circadian Rhythm/*drug effects/genetics/physiology; *Disease/genetics; Eating/drug effects/physiology; Gene Expression Regulation/*drug effects/genetics; HEK293 Cells; Humans; Inflammation/metabolism; Male; Mice; Mice, Inbred C57BL; Motor Activity/drug effects/physiology  
  Abstract The circadian clock regulates many aspects of physiology, energy metabolism, and sleep. Restricted feeding (RF), a regimen that restricts the duration of food availability entrains the circadian clock. Caffeine has been shown to affect both metabolism and sleep. However, its effect on clock gene and clock-controlled gene expression has not been studied. Here, we tested the effect of caffeine on circadian rhythms and the expression of disease and metabolic markers in the serum, liver, and jejunum of mice supplemented with caffeine under ad libitum (AL) feeding or RF for 16 weeks. Caffeine significantly affected circadian oscillation and the daily levels of disease and metabolic markers. Under AL, caffeine reduced the average daily mRNA levels of certain disease and inflammatory markers, such as liver alpha fetoprotein (Afp), C-reactive protein (Crp), jejunum alanine aminotransferase (Alt), growth arrest and DNA damage 45beta (Gadd45beta), Interleukin 1alpha (Il-1alpha), Il-1beta mRNA and serum plasminogen activator inhibitor 1 (PAI-1). Under RF, caffeine reduced the average daily levels of Alt, Gadd45beta, Il-1alpha and Il-1beta mRNA in the jejunum, but not in the liver. In addition, caffeine supplementation led to decreased expression of catabolic factors under RF. In conclusion, caffeine affects circadian gene expression and metabolism possibly leading to beneficial effects mainly under AL feeding.  
  Address Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1357-2725 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21352949 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 810  
Permanent link to this record
 

 
Author Filipski, E.; Subramanian, P.; Carriere, J.; Guettier, C.; Barbason, H.; Levi, F. url  doi
openurl 
  Title Circadian disruption accelerates liver carcinogenesis in mice Type Journal Article
  Year (down) 2009 Publication Mutation Research Abbreviated Journal Mutat Res  
  Volume 680 Issue 1-2 Pages 95-105  
  Keywords Human Health; Animals; Alanine Transaminase/blood; Animals; Aspartate Aminotransferases/blood; Bile Duct Neoplasms/chemically induced/pathology; Bile Ducts, Intrahepatic/drug effects/pathology; Body Weight/drug effects; Carcinogens/administration & dosage/*toxicity; Carcinoma, Hepatocellular/chemically induced/pathology; Cholangiocarcinoma/chemically induced/pathology; Circadian Rhythm/*drug effects; Diethylnitrosamine/administration & dosage/*toxicity; Dose-Response Relationship, Drug; Injections, Intraperitoneal; Liver/drug effects/pathology; Liver Neoplasms/blood/*chemically induced/pathology; Male; Mice; Neoplasms, Multiple Primary/chemically induced/pathology; Sarcoma/chemically induced/pathology; Time Factors  
  Abstract BACKGROUND: The circadian timing system rhythmically controls behavior, physiology, cellular proliferation and xenobiotic metabolism over the 24-h period. The suprachiasmatic nuclei in the hypothalamus coordinate the molecular clocks in most mammalian cells through an array of circadian physiological rhythms including rest-activity, body temperature, feeding patterns and hormonal secretions. As a result, shift work that involves circadian disruption is probably carcinogenic in humans. In experimental models, chronic jet-lag (CJL) suppresses rest-activity and body temperature rhythms and accelerates growth of two transplantable tumors in mice. CJL also suppresses or significantly alters the expression rhythms of clock genes in liver and tumors. Circadian clock disruption from CJL downregulates p53 and upregulates c-Myc, thus favoring cellular proliferation. Here, we investigate the role of CJL as a tumor promoter in mice exposed to the hepatic carcinogen, diethylnitrosamine (DEN). METHODS: In experiment 1 (Exp 1), the dose-dependent carcinogenicity of chronic intraperitoneal (i.p.) administration of DEN was explored in mice. In Exp 2, mice received DEN at 10 mg/kg/day (cumulative dose: 243 mg/kg), then were randomized to remain in a photoperiodic regimen where 12 h of light alternates with 12 h of darkness (LD 12:12) or to be submitted to CJL (8-h advance of light onset every 2 days). Rest-activity and body temperature were monitored. Serum liver enzymes were determined repeatedly. Mice were sacrificed and examined for neoplastic lesions at 10 months. RESULTS: In Exp 1, DEN produced liver cancers in all the mice receiving 10 mg/kg/day. In Exp 2, mice on CJL had increased mean plasma levels of aspartate aminotransferase and more liver tumors as compared to LD mice at approximately 10 months (p = 0.005 and 0.028, respectively). The mean diameter of the largest liver tumor was twice as large in CJL vs LD mice (8.5 vs 4.4 mm, p = 0.027). In LD, a single histologic tumor type per liver was observed. In CJL, up to four different types were associated in the same liver (hepatocellular- or cholangio-carcinomas, sarcomas or mixed tumors). DEN itself markedly disrupted the circadian rhythms in rest-activity and body temperature in all the mice. DEN-induced disruption was prolonged for >or= 3 months by CJL exposure. CONCLUSIONS: The association of circadian disruption with chronic DEN exposure suggests that circadian clocks actively control the mechanisms of liver carcinogenesis in mice. Persistent circadian coordination may further be critical for slowing down and/or reverting cancer development after carcinogen exposure.  
  Address INSERM, U776 Rythmes Biologiques et Cancers, Hopital Paul Brousse, Villejuif F-94807, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-5107 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19833225 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 747  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: