|   | 
Details
   web
Records
Author Kijlstra, A.; Tian, Y.; Kelly, E.R.; Berendschot, T.T.J.M.
Title Lutein: more than just a filter for blue light Type Journal Article
Year 2012 Publication Progress in Retinal and eye Research Abbreviated Journal Prog Retin Eye Res
Volume 31 Issue 4 Pages 303-315
Keywords (up) Animals; Biological Transport/physiology; Eye/metabolism; Humans; Lutein/chemistry/deficiency/pharmacology/*physiology; Macular Degeneration/etiology/prevention & control; Retinal Diseases/metabolism; Scavenger Receptors, Class B/physiology; blue light
Abstract Lutein is concentrated in the primate retina, where together with zeaxanthin it forms the macular pigment. Traditionally lutein is characterized by its blue light filtering and anti-oxidant properties. Eliminating lutein from the diet of experimental animals results in early degenerative signs in the retina while patients with an acquired condition of macular pigment loss (Macular Telangiectasia) show serious visual handicap indicating the importance of macular pigment. Whether lutein intake reduces the risk of age related macular degeneration (AMD) or cataract formation is currently a strong matter of debate and abundant research is carried out to unravel the biological properties of the lutein molecule. SR-B1 has recently been identified as a lutein binding protein in the retina and this same receptor plays a role in the selective uptake in the gut. In the blood lutein is transported via high-density lipoproteins (HDL). Genes controlling SR-B1 and HDL levels predispose to AMD which supports the involvement of cholesterol/lutein transport pathways. Apart from beneficial effects of lutein intake on various visual function tests, recent findings show that lutein can affect immune responses and inflammation. Lutein diminishes the expression of various ocular inflammation models including endotoxin induced uveitis, laser induced choroidal neovascularization, streptozotocin induced diabetes and experimental retinal ischemia and reperfusion. In vitro studies show that lutein suppresses NF kappa-B activation as well as the expression of iNOS and COX-2. Since AMD has features of a chronic low-grade systemic inflammatory response, attention to the exact role of lutein in this disease has shifted from a local effect in the eye towards a possible systemic anti-inflammatory function.
Address University Eye Clinic Maastricht, Maastricht, The Netherlands. aize.kijlstra@wur.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-9462 ISBN Medium
Area Expedition Conference
Notes PMID:22465791 Approved no
Call Number IDA @ john @ Serial 343
Permanent link to this record
 

 
Author Adams, C.A.; Blumenthal, A.; Fernández-Juricic, E.; Bayne, E.; St. Clair, C.C.
Title Effect of anthropogenic light on bird movement, habitat selection, and distribution: a systematic map protocol Type Journal Article
Year 2019 Publication Environmental Evidence Abbreviated Journal Environ Evid
Volume 8 Issue S1 Pages 13
Keywords (up) Animals; BirdsDepartment of Biological Science, University of Alberta, CW 405, Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
Abstract Anthropogenic light is known or suspected to exert profound effects on many taxa, including birds. Documentation of bird aggregation around artificial light at night, as well as observations of bird reactions to strobe lights and lasers, suggests that light may both attract and repel birds, although this assumption has yet to be tested. These effects may cause immediate changes to bird movement, habitat selection and settlement, and ultimately alter bird distribution at large spatial scales. Global increases in the extent of anthropogenic light contribute to interest by wildlife managers and the public in managing light to reduce harm to birds, but there are no evidence syntheses of the multiple ways light affects birds to guide this effort. Existing reviews usually emphasize either bird aggregation or deterrence and do so for a specific context, such as aggregation at communication towers and deterrence from airports. We outline a protocol for a systematic map that collects and organizes evidence from the many contexts in which anthropogenic light is reported to affect bird movement, habitat selection, or distribution. Our map will provide an objective synthesis of the evidence that identifies subtopics that may support systematic review and knowledge gaps that could direct future research questions. These products will substantially advance an understanding of both patterns and processes associated with the responses of birds to anthropogenic light.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2047-2382 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2547
Permanent link to this record
 

 
Author Leskey, T.; Lee, D.-H.; Glenn, D.; Morrison, W.
Title Behavioral Responses of the Invasive Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) to Light-Based Stimuli in the Laboratory and Field Type Journal Article
Year 2015 Publication Journal of Insect Behavior Abbreviated Journal J. of Insect Behav.
Volume 28 Issue 6 Pages 674-692
Keywords (up) Animals; Brown marmorated stink bug; light trap; visual ecology; IPM; wavelength; Halyomorpha halys; invasive species
Abstract Halyomorpha halys (Stål), brown marmorated stink bug, is an invasive insect native to Asia that was accidentally introduced into the United States. The species is a polyphagous pest that has caused serious economic injury to specialty and row crops in the mid-Atlantic region. Growers have targeted H. halys with broad-spectrum materials by increasing the number of and decreasing the interval between insecticide applications. While it is known that adults reliably respond to semiochemical cues, much less is known about the response of H. halys to visual stimuli. Field observations suggest that H. halys adults respond to light-based stimuli, with large aggregations of adults documented at outdoor light sources and captured in commercial blacklight traps. Therefore, we conducted a series of studies aimed at identifying optimal wavelengths and intensities of light attractive to H. halys adults. We found that intensity and wavelength of light affected H. halys response in the laboratory and field. In the laboratory, H. halys demonstrated positive phototactic responses to full-spectrum and wavelength-restricted stimuli at a range of intensities, though the levels of stimulus acceptance and attraction, respectively, changed according to intensity. The species is most attracted to white, blue and black (ultraviolet) wavelength-restricted stimuli in the laboratory and field. In the field, traps baited with blue light sources were less attractive to non-target insect species, but white light sources were more attractive to H. halys indicating that these two light sources may be good candidates for inclusion in light-based monitoring traps.
Address USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Road, Kearneysville, WV, 25430-2771, USA; tracy.leskey(at)ars.usda.gov
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0892-7553 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1300
Permanent link to this record
 

 
Author Mège, P.; Ödeen, A.; Théry, M.; Picard, D.; Secondi, J.
Title Partial Opsin Sequences Suggest UV-Sensitive Vision is Widespread in Caudata Type Journal Article
Year 2015 Publication Evolutionary Biology Abbreviated Journal Evol. Biol.
Volume Issue Pages 1-10
Keywords (up) Animals; Caudata; amphibians; ultraviolet; ultraviolet vision; opsin; photobiology; SWS1; Paralog gene; Tuning site; Nocturnal species; Sliding window; Ka/Ks
Abstract Ultraviolet (UV) vision exists in several animal groups. Intuitively, one would expect this trait to be favoured in species living in bright environments, where UV light is the most present. However, UV sensitivity, as deduced from sequences of UV photoreceptors and/or ocular media transmittance, is also present in nocturnal species, raising questions about the selective pressure maintaining this perceptual ability. Amphibians are among the most nocturnal vertebrates but their visual ecology remains poorly understood relative to other groups. Perhaps because many of these species breed in environments that filter out a large part of UV radiation, physiological and behavioural studies of UV sensitivity in this group are scarce. We investigated the extent of UV vision in Caudata, the order of amphibians with the most nocturnal habits. We could recover sequences of the UV sensitive SWS1 opsin in 40 out of 58 species, belonging to 6 families. In all of these species, the evidence suggests the presence of functional SWS1 opsins under purifying selection, potentially allowing UV vision. Interestingly, most species whose opsin genes failed to amplify exhibited particular ecological features that could drive the loss of UV vision. This likely wide distribution of functional UV photoreceptors in Caudata sheds a new light on the visual ecology of amphibians and questions the function of UV vision in nocturnal animal species.
Address GECCO, Université d’Angers, 2 Bd Lavoisier, 49045, Angers, France; pascal.mege(at)gmail.com
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0071-3260 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1299
Permanent link to this record
 

 
Author Haraguchi, S.; Kamata, M.; Tokita, T.; Tashiro, K.-I.; Sato, M.; Nozaki, M.; Okamoto-Katsuyama, M.; Shimizu, I.; Han, G.; Chowdhury, V.S.; Lei, X.-F.; Miyazaki, T.; Kim-Kaneyama, J.-R.; Nakamachi, T.; Matsuda, K.; Ohtaki, H.; Tokumoto, T.; Tachibana, T.; Miyazaki, A.; Tsutsui, K.
Title Light-at-night exposure affects brain development through pineal allopregnanolone-dependent mechanisms Type Journal Article
Year 2019 Publication ELife Abbreviated Journal Elife
Volume 8 Issue Pages e45306
Keywords (up) Animals; chicken; neuroscience; Circadian disruption; pineal allopregnanolone; cell death
Abstract The molecular mechanisms by which environmental light conditions affect cerebellar development are incompletely understood. We showed that circadian disruption by light-at-night induced Purkinje cell death through pineal allopregnanolone (ALLO) activity during early life in chicks. Light-at-night caused the loss of diurnal variation of pineal ALLO synthesis during early life and led to cerebellar Purkinje cell death, which was suppressed by a daily injection of ALLO. The loss of diurnal variation of pineal ALLO synthesis induced not only reduction in pituitary adenylate cyclase-activating polypeptide (PACAP), a neuroprotective hormone, but also transcriptional repression of the cerebellar Adcyap1 gene that produces PACAP, with subsequent Purkinje cell death. Taken together, pineal ALLO mediated the effect of light on early cerebellar development in chicks.
Address Department of Biology, Waseda University, Tokyo, Japan; shogo.haraguchi(at)gmail.com
Corporate Author Thesis
Publisher eLife Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2050-084X ISBN Medium
Area Expedition Conference
Notes PMID:31566568 Approved no
Call Number GFZ @ kyba @ Serial 2694
Permanent link to this record