|   | 
Details
   web
Records
Author Elvidge, C.D.; Baugh, K.E.; Anderson, S.J.; Sutton, P.C.; Ghosh, T.
Title The Lumen Gini Coefficient: a satellite imagery derived human development index Type Journal Article
Year 2012 Publication Social Geography Discussions Abbreviated Journal Soc. Geogr. Discuss.
Volume 8 Issue 1 Pages 27-59
Keywords Gini coefficient; light at night; remote sensing; economics; development
Abstract The “Lumen Gini Coefficient” is a simple, objective, spatially explicit and globally available empirical measurement of human development derived solely from nighttime satellite imagery and population density. There is increasing recognition that the distribution of wealth and income amongst the population in a nation or region correlates strongly with both the overall happiness of that population and the environmental quality of that nation or region. Measuring the distribution of wealth and income at national and regional scales is an interesting and challenging problem. Gini coefficients derived from Lorenz curves are a well-established method of measuring income distribution. Nonetheless, there are many shortcomings of the Gini coefficient as a measure of income or wealth distribution. Gini coefficients are typically calculated using national level data on the distribution of income through the population. Such data are not available for many countries and the results are generally limited to single values representing entire countries. In this paper we develop an alternative measure of the distribution of “human development”, called the “Lumen Gini coefficient”, that is derived without the use of monetary measures of wealth and is capable of providing a spatial depiction of differences in development within countries.
Address NOAA National Geophysical Data Center, Boulder, Colorado, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1816-1502 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 216
Permanent link to this record
 

 
Author Kyba, C.C.M.; Hänel, A.; Hölker, F.
Title Redefining efficiency for outdoor lighting Type Journal Article
Year 2014 Publication Energy & Environmental Science Abbreviated Journal Energy Environ. Sci.
Volume 7 Issue 6 Pages 1806
Keywords *Lighting; outdoor lighting; luminous efficiency; lighting standards; public policy; illuminance; street lighting
Abstract Improvements in the luminous efficiency of outdoor lamps might not result in energy savings or reductions in greenhouse gas emissions. The reason for this is a rebound effect: when light becomes cheaper, many users will increase illumination, and some previously unlit areas may become lit. We present three policy recommendations that work together to guarantee major energy reductions in street lighting systems. First, taking advantage of new technologies to use light only when and where it is needed. Second, defining maximum permitted illuminances for roadway lighting. Third, defining street lighting system efficiency in terms of kilowatt hours per kilometer per year. Adoption of these policies would not only save energy, but would greatly reduce the amount of light pollution produced by cities. The goal of lighting policy should be to provide the light needed for any given task while minimizing both the energy use and negative environmental side effects of the light.
Address Leibniz Institute of Freshwater Ecology and Inland Fisheries, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 244
Permanent link to this record
 

 
Author Sperber, A.N.; Elmore, A.C.; Crow, M.L.; Cawlfield, J.D.
Title Performance evaluation of energy efficient lighting associated with renewable energy applications Type Journal Article
Year 2012 Publication Renewable Energy Abbreviated Journal Renewable Energy
Volume 44 Issue Pages 423-430
Keywords Renewable energy; Energy efficiency; Ultra capacitor; Light emitting diodes; Metal halide; LED; LED lighting
Abstract Energy efficiency is a primary consideration when designing off-grid renewable energy systems including portable micro-grids. This study focuses on characterizing the potential benefits associated with using energy efficient exterior area lighting commonly associated with remote installations. Light emitting diode (LED) luminaires are becoming more commercially available, and this study compares two LED products designed for exterior lighting to traditional metal halide lamps. The characterization focuses on the use of a diesel generator, battery bank, and a bank of ultra capacitors (UCAPs) to power the lights because these systems are also used to generate or store energy at renewable energy-powered micro-grids. This field-based study quantifies the illuminance provided by each lighting system, diesel consumption rates associated with powering the lights and/or charging the batteries and UCAPs, and the time of operation for each lighting system when powered by a single discharge cycle of the batteries and UCAPs. The energy efficiency benefit of the LED luminaires is offset by their lower illuminance. However, a comparison of lighting standards for specific purposes such as security lighting indicates that LEDs may be appropriate for applications where a metal halide system would provide significantly more illumination than required at a much higher energy cost. For those purposes where higher levels of illuminance are required, the data presented in the paper may be useful in designing a renewable energy-powered micro-grid that uses multiple LED fixtures to illuminate an exterior area that is currently illuminated by a single metal halide light stand.
Address Geological Engineering, Missouri University of Science and Technology, 129 McNutt Hall, 1400 N. Bishop Avenue Rolla, MO 65409, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-1481 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 335
Permanent link to this record
 

 
Author Hölker, F.; Moss, T.; Griefahn, B.; Kloas, W.; Voigt, C.; et al.
Title The Dark Side of Light: A Transdisciplinary Research Agenda for Light Pollution Policy Type Journal Article
Year 2010 Publication Ecol Soc Abbreviated Journal
Volume 15 Issue 4 Pages
Keywords Ecology; artificial light; energy efficiency; lighting concept; light pollution; nightscape; policy; sustainability; transdisciplinary
Abstract Although the invention and widespread use of artificial light is clearly one of the most important human technological advances, the transformation of nightscapes is increasingly recognized as having adverse effects. Night lighting may have serious physiological consequences for humans, ecological and evolutionary implications for animal and plant populations, and may reshape entire ecosystems. However, knowledge on the adverse effects of light pollution is vague. In response to climate change and energy shortages, many countries, regions, and communities are developing new lighting programs and concepts with a strong focus on energy efficiency and greenhouse gas emissions. Given the dramatic increase in artificial light at night (0 – 20% per year, depending on geographic region), we see an urgent need for light pollution policies that go beyond energy efficiency to include human well-being, the structure and functioning of ecosystems, and inter-related socioeconomic consequences. Such a policy shift will require a sound transdisciplinary understanding of the significance of the night, and its loss, for humans and the natural systems upon which we depend. Knowledge is also urgently needed on suitable lighting technologies and concepts which are ecologically, socially, and economically sustainable. Unless managing darkness becomes an integral part of future conservation and lighting policies, modern society may run into a global self-experiment with unpredictable outcomes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 478
Permanent link to this record
 

 
Author Farahat, A.; Florea, A.; Martinez Lastra, J.L.; Branas, C.
Title Energy Efficiency Considerations for LED-based Lighting of Multipurpose Outdoor Environments Type Journal Article
Year 2015 Publication IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensingournal of Emerging and Selected Topics in Power Electronics Abbreviated Journal IEEE J. Emerging and Sel. Topics in Power Elec.
Volume PP Issue 99 Pages 1
Keywords Lighting; LED lighting; LED; optimization; lighting technology; lighting design; energy; energy efficiency
Abstract Nowadays street lighting accounts for 53% of outdoor lighting use and the market is continuously increasing. In the context of rising energy prices and growing environmental awareness, energy efficiency is becoming one of the most important criteria for street lighting systems design. LED-based lights have become the primary option for replacing conventional light bulbs, being digitally controllable, small, highly efficient, and cheap to manufacture. Advanced control strategies adapted to ambient conditions are needed to combine low energy consumption and high quality light ambience according to changing specifications. This paper describes an outdoor lighting solution aimed at energy efficient performance in the context of multipurpose outdoor environments, where control is crucial in achieving efficiency improvements. The work addresses efficiency at the component level, by optimizing the performance of LED drivers, and at system level, defining the control strategy and associated hardware infrastructure. The approach designed was tested in a real environment. The performance of the lighting installation was assessed using the web-based monitoring application, providing real-time consumption information and aggregated historical data.
Address University of Technology, Tampere, Finland.(Email: ahmed.amr.b@gmail.com)
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2168-6777 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1205
Permanent link to this record