toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cajochen, C.; Munch, M.; Kobialka, S.; Krauchi, K.; Steiner, R.; Oelhafen, P.; Orgul, S.; Wirz-Justice, A. url  doi
openurl 
  Title High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light Type Journal Article
  Year 2005 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal (up) J Clin Endocrinol Metab  
  Volume 90 Issue 3 Pages 1311-1316  
  Keywords Human Health; Adult; Body Temperature Regulation/physiology/*radiation effects; Circadian Rhythm/physiology/radiation effects; Color; Heart Rate/physiology/*radiation effects; Humans; *Light; Male; Melatonin/*metabolism; Retinal Cone Photoreceptor Cells/physiology; Sleep Stages/physiology/radiation effects; Wakefulness/physiology/*radiation effects  
  Abstract Light can elicit acute physiological and alerting responses in humans, the magnitude of which depends on the timing, intensity, and duration of light exposure. Here, we report that the alerting response of light as well as its effects on thermoregulation and heart rate are also wavelength dependent. Exposure to 2 h of monochromatic light at 460 nm in the late evening induced a significantly greater melatonin suppression than occurred with 550-nm monochromatic light, concomitant with a significantly greater alerting response and increased core body temperature and heart rate ( approximately 2.8 x 10(13) photons/cm(2)/sec for each light treatment). Light diminished the distal-proximal skin temperature gradient, a measure of the degree of vasoconstriction, independent of wavelength. Nonclassical ocular photoreceptors with peak sensitivity around 460 nm have been found to regulate circadian rhythm function as measured by melatonin suppression and phase shifting. Our findings-that the sensitivity of the human alerting response to light and its thermoregulatory sequelae are blue-shifted relative to the three-cone visual photopic system-indicate an additional role for these novel photoreceptors in modifying human alertness, thermophysiology, and heart rate.  
  Address Centre for Chronobiology, Psychiatric University Clinic, Wilhelm Kleinstr. 27, CH-4025 Basel, Switzerland. christian.cajochen@pukbasel.ch  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-972X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15585546 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 728  
Permanent link to this record
 

 
Author Miler, M.; Sosic-Jurjevic, B.; Nestorovic, N.; Ristic, N.; Medigovic, I.; Savin, S.; Milosevic, V. url  doi
openurl 
  Title Morphological and functional changes in pituitary-thyroid axis following prolonged exposure of female rats to constant light Type Journal Article
  Year 2014 Publication Journal of Morphology Abbreviated Journal (up) J Morphol  
  Volume 275 Issue 10 Pages 1161-1172  
  Keywords TSH cells; constant light; immunohistochemistry; pituitary; rat; thyroid; light exposure  
  Abstract Light regulates numerous physiological functions and synchronizes them with the environment, in part by adjusting secretion of different hormones. We hypothesized that constant light (CL) would disturb pituitary-thyroid axis. Our aim was to determine morphological and functional changes in this endocrine system in such extreme conditions and, based on the obtained results, to propose the underlying mechanism(s). Starting from the thirtieth postnatal day, female Wistar rats were exposed to CL (600 lx) for the following 95 days. The controls were maintained under the regular laboratory lighting conditions. After decapitation, pituitaries and thyroids were prepared for further histomorphometric, immunohistochemical, and immunofluorescence examinations. Concentration of thyroid stimulating hormone (TSH), total T4 and T3 (TH) were determined. Thyroid tissue of light-treated rats was characterized by microfollicular structure. We detected no change in total thyroid volume, localization and accumulation of thyroglobulin, thyroid peroxidase, and sodium-iodide symporter in the follicular epithelium of CL rats. The volume of follicular epithelium and activation index were increased, while volume of the colloid and serum levels of TH decreased. In the pituitary, the relative intensity of TSH beta-immunofluorescence signal within the cytoplasm of thyrotrophs increased, but their average cell volume and the relative volume density decreased. Serum TSH was unaltered. We conclude that exposure of female rats to CL induced alterations in pituitary-thyroid axis. Thyroid tissue was characterized by microfollicular structure. Serum TH levels were reduced without accompanying increase in serum TSH. We hypothesize that increased secretion and clearance of TH together with unchanged or even decreased hormonal synthesis, resulted in decreased serum TH levels in CL group. We assume this decrease consequently led to increased synthesis and/or accumulation of pituitary TSH. However, decreased average TSH cell volume and relative volume density, together with unchanged serum TSH, point to additional, negative regulation of thyrotrophs. J. Morphol., 2014. (c) 2014 Wiley Periodicals, Inc.  
  Address Department of Cytology, Institute for Biological Research “Sinisa Stankovic,” University of Belgrade, Belgrade, Serbia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2887 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24797691 Approved no  
  Call Number IDA @ john @ Serial 304  
Permanent link to this record
 

 
Author Meng, Y.; He, Z.; Yin, J.; Zhang, Y.; Zhang, T. url  doi
openurl 
  Title Quantitative calculation of human melatonin suppression induced by inappropriate light at night Type Journal Article
  Year 2011 Publication Medical & Biological Engineering & Computing Abbreviated Journal (up) Med Biol Eng Comput  
  Volume 49 Issue 9 Pages 1083-1088  
  Keywords Algorithms; Circadian Rhythm/physiology/*radiation effects; Humans; *Lighting; Melatonin/*secretion; *Models, Biological; Retinal Cone Photoreceptor Cells/physiology/radiation effects; Retinal Ganglion Cells/physiology/radiation effects; Retinal Rod Photoreceptor Cells/physiology/radiation effects  
  Abstract Melatonin (C(1)(3)H(1)(6)N(2)O(2)) has a wide range of functions in the body. When is inappropriately exposed to light at night, human circadian rhythm will be interfered and then melatonin secretion will become abnormal. For nearly three decades great progresses have been achieved in analytic action spectra and melatonin suppression by various light conditions. However, so far few articles focused on the quantitative calculation of melatonin suppression induced by light. In this article, an algorithm is established, in which all the contributions of rods, cones, and intrinsically photosensitive retinal ganglion cells are considered. Calculation results accords with the experimental data in references very well, which indicate the validity of this algorithm. This algorithm can also interpret the rule of melatonin suppression varying with light correlated color temperature very well.  
  Address Photonics Research Center, School of Physics, Nankai University, Tianjin 300071, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-0118 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21717231 Approved no  
  Call Number IDA @ john @ Serial 236  
Permanent link to this record
 

 
Author LeGates, T.A.; Altimus, C.M.; Wang, H.; Lee, H.-K.; Yang, S.; Zhao, H.; Kirkwood, A.; Weber, E.T.; Hattar, S. url  doi
openurl 
  Title Aberrant light directly impairs mood and learning through melanopsin-expressing neurons Type Journal Article
  Year 2012 Publication Nature Abbreviated Journal (up) Nature  
  Volume 491 Issue 7425 Pages 594-598  
  Keywords Affect/drug effects/physiology/*radiation effects; Animals; Antidepressive Agents/pharmacology; Body Temperature Regulation/physiology/radiation effects; Circadian Rhythm/physiology; Cognition/drug effects/physiology/radiation effects; Corticosterone/metabolism; Depression/etiology/physiopathology; Desipramine/pharmacology; Fluoxetine/pharmacology; Learning/drug effects/physiology/*radiation effects; *Light; Long-Term Potentiation/drug effects; Male; Memory/physiology/radiation effects; Mice; Photoperiod; Retinal Ganglion Cells/drug effects/*metabolism/*radiation effects; *Rod Opsins/analysis; Sleep/physiology; Wakefulness/physiology  
  Abstract The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.  
  Address Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23151476; PMCID:PMC3549331 Approved no  
  Call Number IDA @ john @ Serial 238  
Permanent link to this record
 

 
Author Kelber, A.; Balkenius, A.; Warrant, E.J. url  doi
openurl 
  Title Scotopic colour vision in nocturnal hawkmoths Type Journal Article
  Year 2002 Publication Nature Abbreviated Journal (up) Nature  
  Volume 419 Issue 6910 Pages 922-925  
  Keywords Animals; Behavior, Animal; Color; Color Perception/*physiology; Conditioning (Psychology)/physiology; Cues; *Darkness; Discrimination Learning/physiology; Humans; Light; Lighting; Moths/*physiology; Photic Stimulation; Photoreceptor Cells, Invertebrate/physiology; Reward; Sensitivity and Specificity; Ultraviolet Rays  
  Abstract Humans are colour-blind at night, and it has been assumed that this is true of all animals. But colour vision is as useful for discriminating objects at night as it is during the day. Here we show, through behavioural experiments, that the nocturnal hawkmoth Deilephila elpenor uses colour vision to discriminate coloured stimuli at intensities corresponding to dim starlight (0.0001 cd x m(-2)). It can do this even if the illumination colour changes, thereby showing colour constancy-a property of true colour vision systems. In identical conditions humans are completely colour-blind. Our calculations show that the possession of three photoreceptor classes reduces the absolute sensitivity of the eye, which indicates that colour vision has a high ecological relevance in nocturnal moths. In addition, the photoreceptors of a single ommatidium absorb too few photons for reliable discrimination, indicating that spatial and/or temporal summation must occur for colour vision to be possible. Taken together, our results show that colour vision occurs at nocturnal intensities in a biologically relevant context.  
  Address Department of Cell and Organism Biology, Vision Group, Lund University, Helgonavagen 3, S-22362 Lund, Sweden. almut.kelber@zool.lu.se  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12410310 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 606  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: