|   | 
Details
   web
Records
Author Brainard, G.C.; Sliney, D.; Hanifin, J.P.; Glickman, G.; Byrne, B.; Greeson, J.M.; Jasser, S.; Gerner, E.; Rollag, M.D.
Title Sensitivity of the human circadian system to short-wavelength (420-nm) light Type Journal Article
Year 2008 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 23 Issue 5 Pages 379-386
Keywords Human Health; Adult; Circadian Rhythm/*radiation effects; Female; Humans; *Light; Male; Melatonin/metabolism; Models, Biological; Neurosecretory Systems; Photons; Pineal Gland/metabolism; Retinal Ganglion Cells/*metabolism; Vision, Ocular
Abstract The circadian and neurobehavioral effects of light are primarily mediated by a retinal ganglion cell photoreceptor in the mammalian eye containing the photopigment melanopsin. Nine action spectrum studies using rodents, monkeys, and humans for these responses indicate peak sensitivities in the blue region of the visible spectrum ranging from 459 to 484 nm, with some disagreement in short-wavelength sensitivity of the spectrum. The aim of this work was to quantify the sensitivity of human volunteers to monochromatic 420-nm light for plasma melatonin suppression. Adult female (n=14) and male (n=12) subjects participated in 2 studies, each employing a within-subjects design. In a fluence-response study, subjects (n=8) were tested with 8 light irradiances at 420 nm ranging over a 4-log unit photon density range of 10(10) to 10(14) photons/cm(2)/sec and 1 dark exposure control night. In the other study, subjects (n=18) completed an experiment comparing melatonin suppression with equal photon doses (1.21 x 10(13) photons/cm(2)/sec) of 420 nm and 460 nm monochromatic light and a dark exposure control night. The first study demonstrated a clear fluence-response relationship between 420-nm light and melatonin suppression (p<0.001) with a half-saturation constant of 2.74 x 10(11) photons/cm(2)/sec. The second study showed that 460-nm light is significantly stronger than 420-nm light for suppressing melatonin (p<0.04). Together, the results clarify the visible short-wavelength sensitivity of the human melatonin suppression action spectrum. This basic physiological finding may be useful for optimizing lighting for therapeutic and other applications.
Address Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA. george.brainard@jefferson.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:18838601 Approved (up) no
Call Number LoNNe @ kagoburian @ Serial 724
Permanent link to this record
 

 
Author Cajochen, C.; Munch, M.; Kobialka, S.; Krauchi, K.; Steiner, R.; Oelhafen, P.; Orgul, S.; Wirz-Justice, A.
Title High sensitivity of human melatonin, alertness, thermoregulation, and heart rate to short wavelength light Type Journal Article
Year 2005 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab
Volume 90 Issue 3 Pages 1311-1316
Keywords Human Health; Adult; Body Temperature Regulation/physiology/*radiation effects; Circadian Rhythm/physiology/radiation effects; Color; Heart Rate/physiology/*radiation effects; Humans; *Light; Male; Melatonin/*metabolism; Retinal Cone Photoreceptor Cells/physiology; Sleep Stages/physiology/radiation effects; Wakefulness/physiology/*radiation effects
Abstract Light can elicit acute physiological and alerting responses in humans, the magnitude of which depends on the timing, intensity, and duration of light exposure. Here, we report that the alerting response of light as well as its effects on thermoregulation and heart rate are also wavelength dependent. Exposure to 2 h of monochromatic light at 460 nm in the late evening induced a significantly greater melatonin suppression than occurred with 550-nm monochromatic light, concomitant with a significantly greater alerting response and increased core body temperature and heart rate ( approximately 2.8 x 10(13) photons/cm(2)/sec for each light treatment). Light diminished the distal-proximal skin temperature gradient, a measure of the degree of vasoconstriction, independent of wavelength. Nonclassical ocular photoreceptors with peak sensitivity around 460 nm have been found to regulate circadian rhythm function as measured by melatonin suppression and phase shifting. Our findings-that the sensitivity of the human alerting response to light and its thermoregulatory sequelae are blue-shifted relative to the three-cone visual photopic system-indicate an additional role for these novel photoreceptors in modifying human alertness, thermophysiology, and heart rate.
Address Centre for Chronobiology, Psychiatric University Clinic, Wilhelm Kleinstr. 27, CH-4025 Basel, Switzerland. christian.cajochen@pukbasel.ch
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-972X ISBN Medium
Area Expedition Conference
Notes PMID:15585546 Approved (up) no
Call Number LoNNe @ kagoburian @ Serial 728
Permanent link to this record
 

 
Author Foster, R.G.
Title Neurobiology: bright blue times Type Journal Article
Year 2005 Publication Nature Abbreviated Journal Nature
Volume 433 Issue 7027 Pages 698-699
Keywords Human Health; Animals; Circadian Rhythm/physiology/radiation effects; Color Perception/physiology/*radiation effects; Humans; *Light; Light Signal Transduction/*radiation effects; Mice; Retinal Ganglion Cells/cytology/physiology/radiation effects; Retinaldehyde/chemistry/metabolism; Rod Opsins/*metabolism; NASA Discipline Space Human Factors; Non-NASA Center
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:15716938 Approved (up) no
Call Number LoNNe @ kagoburian @ Serial 750
Permanent link to this record
 

 
Author Foster, R.G.; Hankins, M.W.
Title Circadian vision Type Journal Article
Year 2007 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 17 Issue 17 Pages R746-51
Keywords Human Health; Animals; Circadian Rhythm/*physiology; Mice; Photoreceptor Cells, Vertebrate/*physiology; Rats; Rod Opsins/physiology; Vision, Ocular/*physiology
Abstract
Address Department of Ophthalmology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. russell.foster@eye.ox.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:17803920 Approved (up) no
Call Number LoNNe @ kagoburian @ Serial 751
Permanent link to this record
 

 
Author Sherman, H.; Gutman, R.; Chapnik, N.; Meylan, J.; le Coutre, J.; Froy, O.
Title Caffeine alters circadian rhythms and expression of disease and metabolic markers Type Journal Article
Year 2011 Publication The International Journal of Biochemistry & Cell Biology Abbreviated Journal Int J Biochem Cell Biol
Volume 43 Issue 5 Pages 829-838
Keywords Human Health; Animals; Biological Markers/blood/metabolism; Body Weight/drug effects/physiology; Caffeine/*pharmacology; Caloric Restriction; Circadian Rhythm/*drug effects/genetics/physiology; *Disease/genetics; Eating/drug effects/physiology; Gene Expression Regulation/*drug effects/genetics; HEK293 Cells; Humans; Inflammation/metabolism; Male; Mice; Mice, Inbred C57BL; Motor Activity/drug effects/physiology
Abstract The circadian clock regulates many aspects of physiology, energy metabolism, and sleep. Restricted feeding (RF), a regimen that restricts the duration of food availability entrains the circadian clock. Caffeine has been shown to affect both metabolism and sleep. However, its effect on clock gene and clock-controlled gene expression has not been studied. Here, we tested the effect of caffeine on circadian rhythms and the expression of disease and metabolic markers in the serum, liver, and jejunum of mice supplemented with caffeine under ad libitum (AL) feeding or RF for 16 weeks. Caffeine significantly affected circadian oscillation and the daily levels of disease and metabolic markers. Under AL, caffeine reduced the average daily mRNA levels of certain disease and inflammatory markers, such as liver alpha fetoprotein (Afp), C-reactive protein (Crp), jejunum alanine aminotransferase (Alt), growth arrest and DNA damage 45beta (Gadd45beta), Interleukin 1alpha (Il-1alpha), Il-1beta mRNA and serum plasminogen activator inhibitor 1 (PAI-1). Under RF, caffeine reduced the average daily levels of Alt, Gadd45beta, Il-1alpha and Il-1beta mRNA in the jejunum, but not in the liver. In addition, caffeine supplementation led to decreased expression of catabolic factors under RF. In conclusion, caffeine affects circadian gene expression and metabolism possibly leading to beneficial effects mainly under AL feeding.
Address Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1357-2725 ISBN Medium
Area Expedition Conference
Notes PMID:21352949 Approved (up) no
Call Number LoNNe @ kagoburian @ Serial 810
Permanent link to this record