toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Meng, Y.; He, Z.; Yin, J.; Zhang, Y.; Zhang, T. url  doi
openurl 
  Title Quantitative calculation of human melatonin suppression induced by inappropriate light at night Type Journal Article
  Year 2011 Publication Medical & Biological Engineering & Computing Abbreviated Journal Med Biol Eng Comput  
  Volume 49 Issue 9 Pages (down) 1083-1088  
  Keywords Algorithms; Circadian Rhythm/physiology/*radiation effects; Humans; *Lighting; Melatonin/*secretion; *Models, Biological; Retinal Cone Photoreceptor Cells/physiology/radiation effects; Retinal Ganglion Cells/physiology/radiation effects; Retinal Rod Photoreceptor Cells/physiology/radiation effects  
  Abstract Melatonin (C(1)(3)H(1)(6)N(2)O(2)) has a wide range of functions in the body. When is inappropriately exposed to light at night, human circadian rhythm will be interfered and then melatonin secretion will become abnormal. For nearly three decades great progresses have been achieved in analytic action spectra and melatonin suppression by various light conditions. However, so far few articles focused on the quantitative calculation of melatonin suppression induced by light. In this article, an algorithm is established, in which all the contributions of rods, cones, and intrinsically photosensitive retinal ganglion cells are considered. Calculation results accords with the experimental data in references very well, which indicate the validity of this algorithm. This algorithm can also interpret the rule of melatonin suppression varying with light correlated color temperature very well.  
  Address Photonics Research Center, School of Physics, Nankai University, Tianjin 300071, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0140-0118 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21717231 Approved no  
  Call Number IDA @ john @ Serial 236  
Permanent link to this record
 

 
Author Berson, D.M.; Dunn, F.A.; Takao, M. url  doi
openurl 
  Title Phototransduction by retinal ganglion cells that set the circadian clock Type Journal Article
  Year 2002 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 295 Issue 5557 Pages (down) 1070-1073  
  Keywords Human Health; Animals; Axons/ultrastructure; *Biological Clocks; *Circadian Rhythm; Dendrites/ultrastructure; Isoquinolines; Kinetics; Light; *Light Signal Transduction; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Retinal Ganglion Cells/chemistry/cytology/*physiology; Rod Opsins/analysis/physiology; Suprachiasmatic Nucleus/cytology/*physiology  
  Abstract Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion cells, they depolarized in response to light even when all synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, and slow kinetics of this light response matched those of the photic entrainment mechanism, suggesting that these ganglion cells may be the primary photoreceptors for this system.  
  Address Department of Neuroscience, Brown University, Providence, RI, 02912 USA. David_Berson@brown.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11834835 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 720  
Permanent link to this record
 

 
Author Kelber, A.; Balkenius, A.; Warrant, E.J. url  doi
openurl 
  Title Scotopic colour vision in nocturnal hawkmoths Type Journal Article
  Year 2002 Publication Nature Abbreviated Journal Nature  
  Volume 419 Issue 6910 Pages (down) 922-925  
  Keywords Animals; Behavior, Animal; Color; Color Perception/*physiology; Conditioning (Psychology)/physiology; Cues; *Darkness; Discrimination Learning/physiology; Humans; Light; Lighting; Moths/*physiology; Photic Stimulation; Photoreceptor Cells, Invertebrate/physiology; Reward; Sensitivity and Specificity; Ultraviolet Rays  
  Abstract Humans are colour-blind at night, and it has been assumed that this is true of all animals. But colour vision is as useful for discriminating objects at night as it is during the day. Here we show, through behavioural experiments, that the nocturnal hawkmoth Deilephila elpenor uses colour vision to discriminate coloured stimuli at intensities corresponding to dim starlight (0.0001 cd x m(-2)). It can do this even if the illumination colour changes, thereby showing colour constancy-a property of true colour vision systems. In identical conditions humans are completely colour-blind. Our calculations show that the possession of three photoreceptor classes reduces the absolute sensitivity of the eye, which indicates that colour vision has a high ecological relevance in nocturnal moths. In addition, the photoreceptors of a single ommatidium absorb too few photons for reliable discrimination, indicating that spatial and/or temporal summation must occur for colour vision to be possible. Taken together, our results show that colour vision occurs at nocturnal intensities in a biologically relevant context.  
  Address Department of Cell and Organism Biology, Vision Group, Lund University, Helgonavagen 3, S-22362 Lund, Sweden. almut.kelber@zool.lu.se  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12410310 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 606  
Permanent link to this record
 

 
Author Sherman, H.; Gutman, R.; Chapnik, N.; Meylan, J.; le Coutre, J.; Froy, O. url  doi
openurl 
  Title Caffeine alters circadian rhythms and expression of disease and metabolic markers Type Journal Article
  Year 2011 Publication The International Journal of Biochemistry & Cell Biology Abbreviated Journal Int J Biochem Cell Biol  
  Volume 43 Issue 5 Pages (down) 829-838  
  Keywords Human Health; Animals; Biological Markers/blood/metabolism; Body Weight/drug effects/physiology; Caffeine/*pharmacology; Caloric Restriction; Circadian Rhythm/*drug effects/genetics/physiology; *Disease/genetics; Eating/drug effects/physiology; Gene Expression Regulation/*drug effects/genetics; HEK293 Cells; Humans; Inflammation/metabolism; Male; Mice; Mice, Inbred C57BL; Motor Activity/drug effects/physiology  
  Abstract The circadian clock regulates many aspects of physiology, energy metabolism, and sleep. Restricted feeding (RF), a regimen that restricts the duration of food availability entrains the circadian clock. Caffeine has been shown to affect both metabolism and sleep. However, its effect on clock gene and clock-controlled gene expression has not been studied. Here, we tested the effect of caffeine on circadian rhythms and the expression of disease and metabolic markers in the serum, liver, and jejunum of mice supplemented with caffeine under ad libitum (AL) feeding or RF for 16 weeks. Caffeine significantly affected circadian oscillation and the daily levels of disease and metabolic markers. Under AL, caffeine reduced the average daily mRNA levels of certain disease and inflammatory markers, such as liver alpha fetoprotein (Afp), C-reactive protein (Crp), jejunum alanine aminotransferase (Alt), growth arrest and DNA damage 45beta (Gadd45beta), Interleukin 1alpha (Il-1alpha), Il-1beta mRNA and serum plasminogen activator inhibitor 1 (PAI-1). Under RF, caffeine reduced the average daily levels of Alt, Gadd45beta, Il-1alpha and Il-1beta mRNA in the jejunum, but not in the liver. In addition, caffeine supplementation led to decreased expression of catabolic factors under RF. In conclusion, caffeine affects circadian gene expression and metabolism possibly leading to beneficial effects mainly under AL feeding.  
  Address Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1357-2725 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21352949 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 810  
Permanent link to this record
 

 
Author Foster, R.G.; Hankins, M.W. url  doi
openurl 
  Title Circadian vision Type Journal Article
  Year 2007 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 17 Issue 17 Pages (down) R746-51  
  Keywords Human Health; Animals; Circadian Rhythm/*physiology; Mice; Photoreceptor Cells, Vertebrate/*physiology; Rats; Rod Opsins/physiology; Vision, Ocular/*physiology  
  Abstract  
  Address Department of Ophthalmology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK. russell.foster@eye.ox.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:17803920 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 751  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: