toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sherman, H.; Gutman, R.; Chapnik, N.; Meylan, J.; le Coutre, J.; Froy, O. url  doi
openurl 
  Title Caffeine alters circadian rhythms and expression of disease and metabolic markers Type Journal Article
  Year 2011 Publication The International Journal of Biochemistry & Cell Biology Abbreviated Journal Int J Biochem Cell Biol  
  Volume 43 Issue (up) 5 Pages 829-838  
  Keywords Human Health; Animals; Biological Markers/blood/metabolism; Body Weight/drug effects/physiology; Caffeine/*pharmacology; Caloric Restriction; Circadian Rhythm/*drug effects/genetics/physiology; *Disease/genetics; Eating/drug effects/physiology; Gene Expression Regulation/*drug effects/genetics; HEK293 Cells; Humans; Inflammation/metabolism; Male; Mice; Mice, Inbred C57BL; Motor Activity/drug effects/physiology  
  Abstract The circadian clock regulates many aspects of physiology, energy metabolism, and sleep. Restricted feeding (RF), a regimen that restricts the duration of food availability entrains the circadian clock. Caffeine has been shown to affect both metabolism and sleep. However, its effect on clock gene and clock-controlled gene expression has not been studied. Here, we tested the effect of caffeine on circadian rhythms and the expression of disease and metabolic markers in the serum, liver, and jejunum of mice supplemented with caffeine under ad libitum (AL) feeding or RF for 16 weeks. Caffeine significantly affected circadian oscillation and the daily levels of disease and metabolic markers. Under AL, caffeine reduced the average daily mRNA levels of certain disease and inflammatory markers, such as liver alpha fetoprotein (Afp), C-reactive protein (Crp), jejunum alanine aminotransferase (Alt), growth arrest and DNA damage 45beta (Gadd45beta), Interleukin 1alpha (Il-1alpha), Il-1beta mRNA and serum plasminogen activator inhibitor 1 (PAI-1). Under RF, caffeine reduced the average daily levels of Alt, Gadd45beta, Il-1alpha and Il-1beta mRNA in the jejunum, but not in the liver. In addition, caffeine supplementation led to decreased expression of catabolic factors under RF. In conclusion, caffeine affects circadian gene expression and metabolism possibly leading to beneficial effects mainly under AL feeding.  
  Address Institute of Biochemistry, Food Science and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1357-2725 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21352949 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 810  
Permanent link to this record
 

 
Author van Diepen, H.C.; Foster, R.G.; Meijer, J.H. url  doi
openurl 
  Title A colourful clock Type Journal Article
  Year 2015 Publication PLoS Biology Abbreviated Journal PLoS Biol  
  Volume 13 Issue (up) 5 Pages e1002160  
  Keywords Animals; Commentary; *Circadian Rhythm; suprachiasmatic nuclei; melanopsin; retinal ganglion cells; entrainment; photoperiod  
  Abstract Circadian rhythms are an essential property of life on Earth. In mammals, these rhythms are coordinated by a small set of neurons, located in the suprachiasmatic nuclei (SCN). The environmental light/dark cycle synchronizes (entrains) the SCN via a distinct pathway, originating in a subset of photosensitive retinal ganglion cells (pRGCs) that utilize the photopigment melanopsin (OPN4). The pRGCs are also innervated by rods and cones and, so, are both endogenously and exogenously light sensitive. Accumulating evidence has shown that the circadian system is sensitive to ultraviolet (UV), blue, and green wavelengths of light. However, it was unclear whether colour perception itself can help entrain the SCN. By utilizing both behavioural and electrophysiological recording techniques, Walmsley and colleagues show that multiple photic channels interact and enhance the capacity of the SCN to synchronize to the environmental cycle. Thus, entrainment of the circadian system combines both environmental irradiance and colour information to ensure that internal and external time are appropriately aligned.  
  Address Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University medical School, Leiden, The Netherlands  
  Corporate Author Thesis  
  Publisher PLOS Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1544-9173 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25996907; PMCID:PMC4440787 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 1183  
Permanent link to this record
 

 
Author Berson, D.M.; Dunn, F.A.; Takao, M. url  doi
openurl 
  Title Phototransduction by retinal ganglion cells that set the circadian clock Type Journal Article
  Year 2002 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 295 Issue (up) 5557 Pages 1070-1073  
  Keywords Human Health; Animals; Axons/ultrastructure; *Biological Clocks; *Circadian Rhythm; Dendrites/ultrastructure; Isoquinolines; Kinetics; Light; *Light Signal Transduction; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Retinal Ganglion Cells/chemistry/cytology/*physiology; Rod Opsins/analysis/physiology; Suprachiasmatic Nucleus/cytology/*physiology  
  Abstract Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion cells, they depolarized in response to light even when all synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, and slow kinetics of this light response matched those of the photic entrainment mechanism, suggesting that these ganglion cells may be the primary photoreceptors for this system.  
  Address Department of Neuroscience, Brown University, Providence, RI, 02912 USA. David_Berson@brown.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:11834835 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 720  
Permanent link to this record
 

 
Author Kelber, A.; Balkenius, A.; Warrant, E.J. url  doi
openurl 
  Title Scotopic colour vision in nocturnal hawkmoths Type Journal Article
  Year 2002 Publication Nature Abbreviated Journal Nature  
  Volume 419 Issue (up) 6910 Pages 922-925  
  Keywords Animals; Behavior, Animal; Color; Color Perception/*physiology; Conditioning (Psychology)/physiology; Cues; *Darkness; Discrimination Learning/physiology; Humans; Light; Lighting; Moths/*physiology; Photic Stimulation; Photoreceptor Cells, Invertebrate/physiology; Reward; Sensitivity and Specificity; Ultraviolet Rays  
  Abstract Humans are colour-blind at night, and it has been assumed that this is true of all animals. But colour vision is as useful for discriminating objects at night as it is during the day. Here we show, through behavioural experiments, that the nocturnal hawkmoth Deilephila elpenor uses colour vision to discriminate coloured stimuli at intensities corresponding to dim starlight (0.0001 cd x m(-2)). It can do this even if the illumination colour changes, thereby showing colour constancy-a property of true colour vision systems. In identical conditions humans are completely colour-blind. Our calculations show that the possession of three photoreceptor classes reduces the absolute sensitivity of the eye, which indicates that colour vision has a high ecological relevance in nocturnal moths. In addition, the photoreceptors of a single ommatidium absorb too few photons for reliable discrimination, indicating that spatial and/or temporal summation must occur for colour vision to be possible. Taken together, our results show that colour vision occurs at nocturnal intensities in a biologically relevant context.  
  Address Department of Cell and Organism Biology, Vision Group, Lund University, Helgonavagen 3, S-22362 Lund, Sweden. almut.kelber@zool.lu.se  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12410310 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 606  
Permanent link to this record
 

 
Author van der Burght, B.W.; Hansen, M.; Olsen, J.; Zhou, J.; Wu, Y.; Nissen, M.H.; Sparrow, J.R. url  doi
openurl 
  Title Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells Type Journal Article
  Year 2013 Publication Acta Ophthalmologica Abbreviated Journal Acta Ophthalmol  
  Volume 91 Issue (up) 7 Pages e537-45  
  Keywords Apoptosis; Cell Line; Cell Survival; Gene Expression Regulation/*physiology; Humans; Light; Lipofuscin/genetics; Oligonucleotide Array Sequence Analysis; Principal Component Analysis; Pyridinium Compounds; RNA, Messenger/genetics; Real-Time Polymerase Chain Reaction; Retinal Pigment Epithelium/metabolism/pathology/*radiation effects; Retinoids/*genetics; Transcriptome; A2e; age-related macular degeneration; apoptosis; complement cascade; gene expression; retinal pigment epithelial cells; blue light; retinal pigment epithelial; epigenetics  
  Abstract PURPOSE: Accumulation of bisretinoids as lipofuscin in retinal pigment epithelial (RPE) cells is implicated in the pathogenesis of some blinding diseases including age-related macular degeneration (AMD). To identify genes whose expression may change under conditions of bisretinoid accumulation, we investigated the differential gene expression in RPE cells that had accumulated the lipofuscin fluorophore A2E and were exposed to blue light (430 nm). METHODS: A2E-laden RPE cells were exposed to blue light (A2E/430 nm) at various time intervals. Cell death was quantified using Dead Red staining, and RNA levels for the entire genome was determined using DNA microarrays (Affymetrix GeneChip Human Genome 2.0 Plus). Array results for selected genes were confirmed by real-time reverse-transcriptase polymerase chain reaction. RESULTS: Principal component analysis revealed that the A2E-laden RPE cells irradiated with blue light were clearly distinguishable from the control samples. We found differential regulation of genes belonging to the following functional groups: transcription factors, stress response, apoptosis and immune response. Among the last mentioned were downregulation of four genes that coded for proteins that have an inhibitory effect on the complement cascade: (complement factor H, complement factor H-related 1, complement factor I and vitronectin) and of two belonging to the classical pathway (complement component 1, s subcomponent and complement component 1, r subcomponent). CONCLUSION: This study demonstrates that blue light irradiation of A2E-laden RPE cells can alter the transcription of genes belonging to different functional pathways including stress response, apoptosis and the immune response. We suggest that these molecules may be associated to the pathogenesis of AMD and can potentially serve as future therapeutic targets.  
  Address Department of International Health, Immunology and Microbiology, Eye Research Unit, University of Copenhagen, Copenhagen, DenmarkDepartment of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DenmarkDepartment of Ophthalmology, Columbia University, New York, New York, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-375X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23742627 Approved no  
  Call Number IDA @ john @ Serial 346  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: