toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sporl, F.; Korge, S.; Jurchott, K.; Wunderskirchner, M.; Schellenberg, K.; Heins, S.; Specht, A.; Stoll, C.; Klemz, R.; Maier, B.; Wenck, H.; Schrader, A.; Kunz, D.; Blatt, T.; Kramer, A. url  doi
openurl 
  Title Kruppel-like factor 9 is a circadian transcription factor in human epidermis that controls proliferation of keratinocytes Type Journal Article
  Year 2012 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A  
  Volume 109 Issue 27 Pages 10903-10908  
  Keywords Human Health; Anti-Inflammatory Agents/pharmacology; Biological Clocks/genetics/physiology; Cell Differentiation/physiology; Cell Proliferation/drug effects; Cells, Cultured; Circadian Rhythm/genetics/*physiology; Epidermis/cytology/*physiology; Genome-Wide Association Study; Homeostasis/physiology; Humans; Hydrocortisone/pharmacology; Keratinocytes/cytology/drug effects/*physiology; Kruppel-Like Transcription Factors/*genetics/*metabolism; Luciferases/genetics; Skin Neoplasms/genetics/physiopathology  
  Abstract Circadian clocks govern a wide range of cellular and physiological functions in various organisms. Recent evidence suggests distinct functions of local clocks in peripheral mammalian tissues such as immune responses and cell cycle control. However, studying circadian action in peripheral tissues has been limited so far to mouse models, leaving the implication for human systems widely elusive. In particular, circadian rhythms in human skin, which is naturally exposed to strong daytime-dependent changes in the environment, have not been investigated to date on a molecular level. Here, we present a comprehensive analysis of circadian gene expression in human epidermis. Whole-genome microarray analysis of suction-blister epidermis obtained throughout the day revealed a functional circadian clock in epidermal keratinocytes with hundreds of transcripts regulated in a daytime-dependent manner. Among those, we identified a circadian transcription factor, Kruppel-like factor 9 (Klf9), that is substantially up-regulated in a cortisol and differentiation-state-dependent manner. Gain- and loss-of-function experiments showed strong antiproliferative effects of Klf9. Putative Klf9 target genes include proliferation/differentiation markers that also show circadian expression in vivo, suggesting that Klf9 affects keratinocyte proliferation/differentiation by controlling the expression of target genes in a daytime-dependent manner.  
  Address Research and Development, Beiersdorf AG, 20245 Hamburg, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-8424 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:22711835; PMCID:PMC3390879 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 814  
Permanent link to this record
 

 
Author Chamorro, E.; Bonnin-Arias, C.; Perez-Carrasco, M.J.; Munoz de Luna, J.; Vazquez, D.; Sanchez-Ramos, C. url  doi
openurl 
  Title Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro Type Journal Article
  Year 2013 Publication Photochemistry and Photobiology Abbreviated Journal Photochem Photobiol  
  Volume 89 Issue 2 Pages 468-473  
  Keywords Human Health; Apoptosis/*radiation effects; Biological Markers/metabolism; Caspases/metabolism; Cell Survival/radiation effects; DNA Damage; Epithelial Cells/cytology/metabolism/*radiation effects; Histones/metabolism; Humans; Light; Membrane Potential, Mitochondrial/*radiation effects; Mitochondria/*radiation effects; Photoperiod; Primary Cell Culture; Reactive Oxygen Species/metabolism; Retinal Pigment Epithelium/cytology/metabolism/*radiation effects  
  Abstract Human visual system is exposed to high levels of natural and artificial lights of different spectra and intensities along lifetime. Light-emitting diodes (LEDs) are the basic lighting components in screens of PCs, phones and TV sets; hence it is so important to know the implications of LED radiations on the human visual system. The aim of this study was to investigate the effect of LEDs radiations on human retinal pigment epithelial cells (HRPEpiC). They were exposed to three light-darkness (12 h/12 h) cycles, using blue-468 nm, green-525 nm, red-616 nm and white light. Cellular viability of HRPEpiC was evaluated by labeling all nuclei with DAPI; Production of reactive oxygen species (ROS) was determined by H2DCFDA staining; mitochondrial membrane potential was quantified by TMRM staining; DNA damage was determined by H2AX histone activation, and apoptosis was evaluated by caspases-3,-7 activation. It is shown that LED radiations decrease 75-99% cellular viability, and increase 66-89% cellular apoptosis. They also increase ROS production and DNA damage. Fluorescence intensity of apoptosis was 3.7% in nonirradiated cells and 88.8%, 86.1%, 83.9% and 65.5% in cells exposed to white, blue, green or red light, respectively. This study indicates three light-darkness (12 h/12 h) cycles of exposure to LED lighting affect in vitro HRPEpiC.  
  Address Neuro-Computing and Neuro-Robotics Research Group, Universidad Complutense de Madrid, Madrid, Spain. eva.chamorro@opt.ucm.es  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8655 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:22989198 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 511  
Permanent link to this record
 

 
Author LeGates, T.A.; Altimus, C.M.; Wang, H.; Lee, H.-K.; Yang, S.; Zhao, H.; Kirkwood, A.; Weber, E.T.; Hattar, S. url  doi
openurl 
  Title Aberrant light directly impairs mood and learning through melanopsin-expressing neurons Type Journal Article
  Year 2012 Publication Nature Abbreviated Journal Nature  
  Volume 491 Issue 7425 Pages 594-598  
  Keywords Affect/drug effects/physiology/*radiation effects; Animals; Antidepressive Agents/pharmacology; Body Temperature Regulation/physiology/radiation effects; Circadian Rhythm/physiology; Cognition/drug effects/physiology/radiation effects; Corticosterone/metabolism; Depression/etiology/physiopathology; Desipramine/pharmacology; Fluoxetine/pharmacology; Learning/drug effects/physiology/*radiation effects; *Light; Long-Term Potentiation/drug effects; Male; Memory/physiology/radiation effects; Mice; Photoperiod; Retinal Ganglion Cells/drug effects/*metabolism/*radiation effects; *Rod Opsins/analysis; Sleep/physiology; Wakefulness/physiology  
  Abstract The daily solar cycle allows organisms to synchronize their circadian rhythms and sleep-wake cycles to the correct temporal niche. Changes in day-length, shift-work, and transmeridian travel lead to mood alterations and cognitive function deficits. Sleep deprivation and circadian disruption underlie mood and cognitive disorders associated with irregular light schedules. Whether irregular light schedules directly affect mood and cognitive functions in the context of normal sleep and circadian rhythms remains unclear. Here we show, using an aberrant light cycle that neither changes the amount and architecture of sleep nor causes changes in the circadian timing system, that light directly regulates mood-related behaviours and cognitive functions in mice. Animals exposed to the aberrant light cycle maintain daily corticosterone rhythms, but the overall levels of corticosterone are increased. Despite normal circadian and sleep structures, these animals show increased depression-like behaviours and impaired hippocampal long-term potentiation and learning. Administration of the antidepressant drugs fluoxetine or desipramine restores learning in mice exposed to the aberrant light cycle, suggesting that the mood deficit precedes the learning impairments. To determine the retinal circuits underlying this impairment of mood and learning, we examined the behavioural consequences of this light cycle in animals that lack intrinsically photosensitive retinal ganglion cells. In these animals, the aberrant light cycle does not impair mood and learning, despite the presence of the conventional retinal ganglion cells and the ability of these animals to detect light for image formation. These findings demonstrate the ability of light to influence cognitive and mood functions directly through intrinsically photosensitive retinal ganglion cells.  
  Address Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:23151476; PMCID:PMC3549331 Approved no  
  Call Number IDA @ john @ Serial 238  
Permanent link to this record
 

 
Author van der Burght, B.W.; Hansen, M.; Olsen, J.; Zhou, J.; Wu, Y.; Nissen, M.H.; Sparrow, J.R. url  doi
openurl 
  Title Early changes in gene expression induced by blue light irradiation of A2E-laden retinal pigment epithelial cells Type Journal Article
  Year 2013 Publication Acta Ophthalmologica Abbreviated Journal Acta Ophthalmol  
  Volume 91 Issue 7 Pages e537-45  
  Keywords Apoptosis; Cell Line; Cell Survival; Gene Expression Regulation/*physiology; Humans; Light; Lipofuscin/genetics; Oligonucleotide Array Sequence Analysis; Principal Component Analysis; Pyridinium Compounds; RNA, Messenger/genetics; Real-Time Polymerase Chain Reaction; Retinal Pigment Epithelium/metabolism/pathology/*radiation effects; Retinoids/*genetics; Transcriptome; A2e; age-related macular degeneration; apoptosis; complement cascade; gene expression; retinal pigment epithelial cells; blue light; retinal pigment epithelial; epigenetics  
  Abstract PURPOSE: Accumulation of bisretinoids as lipofuscin in retinal pigment epithelial (RPE) cells is implicated in the pathogenesis of some blinding diseases including age-related macular degeneration (AMD). To identify genes whose expression may change under conditions of bisretinoid accumulation, we investigated the differential gene expression in RPE cells that had accumulated the lipofuscin fluorophore A2E and were exposed to blue light (430 nm). METHODS: A2E-laden RPE cells were exposed to blue light (A2E/430 nm) at various time intervals. Cell death was quantified using Dead Red staining, and RNA levels for the entire genome was determined using DNA microarrays (Affymetrix GeneChip Human Genome 2.0 Plus). Array results for selected genes were confirmed by real-time reverse-transcriptase polymerase chain reaction. RESULTS: Principal component analysis revealed that the A2E-laden RPE cells irradiated with blue light were clearly distinguishable from the control samples. We found differential regulation of genes belonging to the following functional groups: transcription factors, stress response, apoptosis and immune response. Among the last mentioned were downregulation of four genes that coded for proteins that have an inhibitory effect on the complement cascade: (complement factor H, complement factor H-related 1, complement factor I and vitronectin) and of two belonging to the classical pathway (complement component 1, s subcomponent and complement component 1, r subcomponent). CONCLUSION: This study demonstrates that blue light irradiation of A2E-laden RPE cells can alter the transcription of genes belonging to different functional pathways including stress response, apoptosis and the immune response. We suggest that these molecules may be associated to the pathogenesis of AMD and can potentially serve as future therapeutic targets.  
  Address Department of International Health, Immunology and Microbiology, Eye Research Unit, University of Copenhagen, Copenhagen, DenmarkDepartment of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, DenmarkDepartment of Ophthalmology, Columbia University, New York, New York, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-375X ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:23742627 Approved no  
  Call Number IDA @ john @ Serial 346  
Permanent link to this record
 

 
Author Lucas, R.J.; Peirson, S.N.; Berson, D.M.; Brown, T.M.; Cooper, H.M.; Czeisler, C.A.; Figueiro, M.G.; Gamlin, P.D.; Lockley, S.W.; O'Hagan, J.B.; Price, L.L.A.; Provencio, I.; Skene, D.J.; Brainard, G.C. url  doi
openurl 
  Title Measuring and using light in the melanopsin age Type Journal Article
  Year 2014 Publication Trends in Neurosciences Abbreviated Journal Trends Neurosci  
  Volume 37 Issue 1 Pages 1-9  
  Keywords Editorial; Animals; Circadian Rhythm/physiology; Humans; Photoreceptor Cells/metabolism; Phototherapy/*trends; Retinal Ganglion Cells/metabolism; Rod Opsins/*physiology  
  Abstract Light is a potent stimulus for regulating circadian, hormonal, and behavioral systems. In addition, light therapy is effective for certain affective disorders, sleep problems, and circadian rhythm disruption. These biological and behavioral effects of light are influenced by a distinct photoreceptor in the eye, melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs), in addition to conventional rods and cones. We summarize the neurophysiology of this newly described sensory pathway and consider implications for the measurement, production, and application of light. A new light-measurement strategy taking account of the complex photoreceptive inputs to these non-visual responses is proposed for use by researchers, and simple suggestions for artificial/architectural lighting are provided for regulatory authorities, lighting manufacturers, designers, and engineers.  
  Address Department of Neurology, Thomas Jefferson University, Philidelphia, PA, USA. Electronic address: George.Brainard@jefferson.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0166-2236 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:24287308 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 457  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: