toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Filipski, E.; Li, X.M.; Levi, F. url  doi
openurl 
  Title Disruption of circadian coordination and malignant growth Type Journal Article
  Year 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control  
  Volume 17 Issue 4 Pages 509-514  
  Keywords Human Health; Animals; Biological Clocks; Body Temperature; Cell Cycle Proteins; Cell Line, Tumor; Chronobiology Disorders/*complications/physiopathology; Circadian Rhythm; Corticosterone/blood; DNA-Binding Proteins/metabolism; Jet Lag Syndrome/complications/physiopathology; Lymphocyte Count; Mice; Neoplasm Transplantation; Nuclear Proteins/metabolism; Nuclear Receptor Subfamily 1, Group D, Member 1; Osteosarcoma/*pathology/physiopathology; Pancreatic Neoplasms/*pathology/physiopathology; Period Circadian Proteins; Receptors, Cytoplasmic and Nuclear/metabolism; Suprachiasmatic Nucleus/physiopathology; Transcription Factors/metabolism  
  Abstract Altered circadian rhythms predicted for poor survival in patients with metastatic colorectal or breast cancer. An increased incidence of cancers has been reported in flying attendants and in women working predominantly at night. To explore the contribution of circadian structure to tumor growth we ablated the 24-h rest-activity cycle and markedly altered the rhythms in body temperature, serum corticosterone and lymphocyte count in mice by complete stereotaxic destruction of the suprachiasmatic nuclei (SCN) or by subjecting the mice to experimental chronic jet-lag. Such disruption of circadian coordination significantly accelerated malignant growth in two transplantable tumor models, Glasgow osteosarcoma and Pancreatic adenocarcinoma. The mRNA expression of clock genes per2 and reverb-alpha in controls displayed significant circadian rhythms in the liver (Cosinor, p=0.006 and p=0.003, respectively) and in the tumor (p=0.04 and p<0.001, respectively). Both rhythms were suppressed in the liver and in the tumor of jet lagged mice. This functional disturbance of molecular clock resulted in down regulation of p53 and overexpression of c-Myc, two effects which may favor cancer growth. CONCLUSIONS: These results indicate that circadian system could play an important role in malignant growth control. This should be taken into consideration in cancer prevention and therapy.  
  Address INSERM E 354 Cancer Chronotherapeutics, Hopital Paul Brousse, Villejuif, France. filipski@vjf.inserm.fr  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-5243 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16596304 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 748  
Permanent link to this record
 

 
Author Haus, E.; Smolensky, M. url  doi
openurl 
  Title Biological clocks and shift work: circadian dysregulation and potential long-term effects Type Journal Article
  Year 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control  
  Volume 17 Issue 4 Pages 489-500  
  Keywords Human Health; Adaptation, Physiological; Animals; Biological Clocks; Cardiovascular Abnormalities/etiology; Chronobiology Disorders/*complications/physiopathology; Chronobiology Phenomena; Humans; Neoplasms/etiology; Occupational Diseases/*etiology; Risk Factors; Suprachiasmatic Nucleus/physiopathology; *Work Schedule Tolerance  
  Abstract Long-term epidemiologic studies on large numbers of night and rotating shift workers have suggested an increase in the incidence of breast and colon cancer in these populations. These studies suffer from poor definition and quantification of the work schedules of the exposed subjects. Against this background, the pathophysiology of phase shift and phase adaptation is reviewed. A phase shift as experienced in night and rotating shift work involves desynchronization at the molecular level in the circadian oscillators in the central nervous tissue and in most peripheral tissues of the body. There is a change in the coordination between oscillators with transient loss of control by the master-oscillator (the Suprachiasmatic Nucleus, SCN) in the hypothalamus. The implications of the pathophysiology of phase shift are discussed for long-term health effects and for the design of ergonomic work schedules minimizing the adverse health effects upon the worker.  
  Address Department of Laboratory Medicine & Pathology, University of Minnesota, Health Partners Medical Group, Regions Hospital, St. Paul, Minnesota 55101, USA. Erhard.X.Haus@Healthpartners.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-5243 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16596302 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 760  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: