toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author DeVoe, R. D. url  openurl
  Title Dual Sensitivities of Cells in Wolf Spider Eyes at Ultraviolet and Visible Wavelengths of Light Type Journal Article
  Year 1972 Publication Journal of General Physiology Abbreviated Journal JGP  
  Volume 59 Issue 3 Pages 247-269  
  Keywords Animals; Adaptation; Animals; Color Perception; Electroretinography; Eye; Eye: radiation effects; Light; Membrane Potentials; Ocular; Ocular Physiological Phenomena; Radiation Effects; Spiders; Spiders: physiology; Ultraviolet Rays  
  Abstract Intracellular recordings have been made from visual cells in principal and secondary eyes of in vitro wolf spider preparations. The responses of all cells to all wavelengths of light were graded depolarizations; no hyperpolarizations or nerve discharges were seen. Cells in a secondary eye, the anterior lateral eye, had a maximum sensitivity in the visible at 510 nm and a secondary maximum, or shoulder, of sensitivity in the near ultraviolet at 380 nm. Cells in principal eyes, the anterior median eyes, all responded maximally both in the visible at 510 nm and in the ultraviolet at 360-370 nm or less. However, there was no typical ratio of ultraviolet to visible sensitivities; the differences in log sensitivities (log UV/VIS) varied from 3.3 to -0.5. Each principal eye had a population of cells with different ratios. These populations varied with the time of the year, possibly due to changes in light upon the animals. Chromatic adaptations of cells in anterior median (but not anterior lateral) eyes resulted in small, selective changes in spectral sensitivities, and there was some facilitation of responses from cells repeatedly stimulated. It is concluded that cells of secondary eyes contain only a visual pigment absorbing maximally in the visible, while cells of principal eyes probably contain variable amounts of both this pigment and one absorbing in the ultraviolet as well.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 668  
Permanent link to this record
 

 
Author Foster, R.G. url  doi
openurl 
  Title Neurobiology: bright blue times Type Journal Article
  Year 2005 Publication Nature Abbreviated Journal Nature  
  Volume 433 Issue 7027 Pages 698-699  
  Keywords Human Health; Animals; Circadian Rhythm/physiology/radiation effects; Color Perception/physiology/*radiation effects; Humans; *Light; Light Signal Transduction/*radiation effects; Mice; Retinal Ganglion Cells/cytology/physiology/radiation effects; Retinaldehyde/chemistry/metabolism; Rod Opsins/*metabolism; NASA Discipline Space Human Factors; Non-NASA Center  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15716938 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 750  
Permanent link to this record
 

 
Author Jin, H.; Jin, S.; Chen, L.; Cen, S.; Yuan, K. url  doi
openurl 
  Title Research on the Lighting Performance of LED Street Lights With Different Color Temperatures Type Journal Article
  Year 2015 Publication IEEE Photonics Journal Abbreviated Journal IEEE Photonics J.  
  Volume 7 Issue 6 Pages 1-9  
  Keywords Lighting; LED; light-emitting diodes; PC-LED; dark adaption; color perception; fog; skyglow  
  Abstract While light-emitting diodes (LEDs) are a very efficient lighting option, whether phosphor-coated LEDs (PC-LEDs) are suitable for street lighting remains to be tested. Correlated color temperature (CCT), mesopic vision illuminance, dark adaption, color perception, fog penetration, and skyglow pollution are important factors that determine alight's suitability for street lighting. In this paper, we have closely examined the lighting performance of LED street lights with different color temperatures and found that low-color-temperature (around 3000 K) PC-LEDs are more suitable for street lighting.  
  Address  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1943-0655 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1307  
Permanent link to this record
 

 
Author Johnsen, S.; Kelber, A.; Warrant, E.; Sweeney, A.M.; Widder, E.A.; Lee, R.L.J.; Hernandez-Andres, J. url  doi
openurl 
  Title Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor Type Journal Article
  Year 2006 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 209 Issue Pt 5 Pages 789-800  
  Keywords Animals; Color Perception/*physiology; Ecosystem; *Light; Moths/*physiology  
  Abstract Recent studies have shown that certain nocturnal insect and vertebrate species have true color vision under nocturnal illumination. Thus, their vision is potentially affected by changes in the spectral quality of twilight and nocturnal illumination, due to the presence or absence of the moon, artificial light pollution and other factors. We investigated this in the following manner. First we measured the spectral irradiance (from 300 to 700 nm) during the day, sunset, twilight, full moon, new moon, and in the presence of high levels of light pollution. The spectra were then converted to both human-based chromaticities and to relative quantum catches for the nocturnal hawkmoth Deilephila elpenor, which has color vision. The reflectance spectra of various flowers and leaves and the red hindwings of D. elpenor were also converted to chromaticities and relative quantum catches. Finally, the achromatic and chromatic contrasts (with and without von Kries color constancy) of the flowers and hindwings against a leaf background were determined under the various lighting environments. The twilight and nocturnal illuminants were substantially different from each other, resulting in significantly different contrasts. The addition of von Kries color constancy significantly reduced the effect of changing illuminants on chromatic contrast, suggesting that, even in this light-limited environment, the ability of color vision to provide reliable signals under changing illuminants may offset the concurrent threefold decrease in sensitivity and spatial resolution. Given this, color vision may be more common in crepuscular and nocturnal species than previously considered.  
  Address Biology Department, Duke University, Durham, NC 27708, USA. sjohnsen@duke.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16481568 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 604  
Permanent link to this record
 

 
Author Kelber, A.; Balkenius, A.; Warrant, E.J. url  doi
openurl 
  Title Scotopic colour vision in nocturnal hawkmoths Type Journal Article
  Year 2002 Publication Nature Abbreviated Journal Nature  
  Volume 419 Issue 6910 Pages 922-925  
  Keywords Animals; Behavior, Animal; Color; Color Perception/*physiology; Conditioning (Psychology)/physiology; Cues; *Darkness; Discrimination Learning/physiology; Humans; Light; Lighting; Moths/*physiology; Photic Stimulation; Photoreceptor Cells, Invertebrate/physiology; Reward; Sensitivity and Specificity; Ultraviolet Rays  
  Abstract Humans are colour-blind at night, and it has been assumed that this is true of all animals. But colour vision is as useful for discriminating objects at night as it is during the day. Here we show, through behavioural experiments, that the nocturnal hawkmoth Deilephila elpenor uses colour vision to discriminate coloured stimuli at intensities corresponding to dim starlight (0.0001 cd x m(-2)). It can do this even if the illumination colour changes, thereby showing colour constancy-a property of true colour vision systems. In identical conditions humans are completely colour-blind. Our calculations show that the possession of three photoreceptor classes reduces the absolute sensitivity of the eye, which indicates that colour vision has a high ecological relevance in nocturnal moths. In addition, the photoreceptors of a single ommatidium absorb too few photons for reliable discrimination, indicating that spatial and/or temporal summation must occur for colour vision to be possible. Taken together, our results show that colour vision occurs at nocturnal intensities in a biologically relevant context.  
  Address Department of Cell and Organism Biology, Vision Group, Lund University, Helgonavagen 3, S-22362 Lund, Sweden. almut.kelber@zool.lu.se  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:12410310 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 606  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: