|   | 
Details
   web
Records
Author (up) Falchi, F.; Cinzano, P.; Elvidge, C.D.; Keith, D.M.; Haim, A.
Title Limiting the impact of light pollution on human health, environment and stellar visibility Type Journal Article
Year 2011 Publication Journal of Environmental Management Abbreviated Journal J Environ Manage
Volume 92 Issue 10 Pages 2714-2722
Keywords Animals; Animals, Wild; Conservation of Natural Resources; Environment; *Environmental Pollution; Eye; *Health; Humans; Lighting/*adverse effects/standards; Melatonin/*antagonists & inhibitors; Sodium; Vision, Ocular/*physiology; Visual Perception
Abstract Light pollution is one of the most rapidly increasing types of environmental degradation. Its levels have been growing exponentially over the natural nocturnal lighting levels provided by starlight and moonlight. To limit this pollution several effective practices have been defined: the use of shielding on lighting fixture to prevent direct upward light, particularly at low angles above the horizon; no over lighting, i.e. avoid using higher lighting levels than strictly needed for the task, constraining illumination to the area where it is needed and the time it will be used. Nevertheless, even after the best control of the light distribution is reached and when the proper quantity of light is used, some upward light emission remains, due to reflections from the lit surfaces and atmospheric scatter. The environmental impact of this “residual light pollution”, cannot be neglected and should be limited too. Here we propose a new way to limit the effects of this residual light pollution on wildlife, human health and stellar visibility. We performed analysis of the spectra of common types of lamps for external use, including the new LEDs. We evaluated their emissions relative to the spectral response functions of human eye photoreceptors, in the photopic, scotopic and the 'meltopic' melatonin suppressing bands. We found that the amount of pollution is strongly dependent on the spectral characteristics of the lamps, with the more environmentally friendly lamps being low pressure sodium, followed by high pressure sodium. Most polluting are the lamps with a strong blue emission, like Metal Halide and white LEDs. Migration from the now widely used sodium lamps to white lamps (MH and LEDs) would produce an increase of pollution in the scotopic and melatonin suppression bands of more than five times the present levels, supposing the same photopic installed flux. This increase will exacerbate known and possible unknown effects of light pollution on human health, environment and on visual perception of the Universe by humans. We present quantitative criteria to evaluate the lamps based on their spectral emissions and we suggest regulatory limits for future lighting.
Address Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Via Roma 13, I-36106 Thiene, Italy. falchi@lightpollution.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes PMID:21745709 Approved no
Call Number IDA @ john @ Serial 131
Permanent link to this record
 

 
Author (up) Kamrowski, R.L.; Sutton, S.G.; Tobin, R.C.; Hamann, M.
Title Potential applicability of persuasive communication to light-glow reduction efforts: a case study of marine turtle conservation Type Journal Article
Year 2014 Publication Environmental Management Abbreviated Journal Environ Manage
Volume 54 Issue 3 Pages 583-595
Keywords Society; Adolescent; Adult; Aged; Aged, 80 and over; Animals; *Conservation of Natural Resources; Culture; Female; Humans; *Lighting; Male; Middle Aged; Persuasive Communication; Public Opinion; Queensland; Questionnaires; *Turtles; Young Adult
Abstract Artificial lighting along coastlines poses a significant threat to marine turtles due to the importance of light for their natural orientation at the nesting beach. Effective lighting management requires widespread support and participation, yet engaging the public with light reduction initiatives is difficult because benefits associated with artificial lighting are deeply entrenched within modern society. We present a case study from Queensland, Australia, where an active light-glow reduction campaign has been in place since 2008 to protect nesting turtles. Semi-structured questionnaires explored community beliefs about reducing light and evaluated the potential for using persuasive communication techniques based on the theory of planned behavior (TPB) to increase engagement with light reduction. Respondents (n = 352) had moderate to strong intentions to reduce light. TPB variables explained a significant proportion of variance in intention (multiple regression: R (2) = 0.54-0.69, P < 0.001), but adding a personal norm variable improved the model (R (2) = 0.73-0.79, P < 0.001). Significant differences in belief strength between campaign compliers and non-compliers suggest that targeting the beliefs reducing light leads to “increased protection of local turtles” (P < 0.01) and/or “benefits to the local economy” (P < 0.05), in combination with an appeal to personal norms, would produce the strongest persuasion potential for future communications. Selective legislation and commitment strategies may be further useful strategies to increase community light reduction. As artificial light continues to gain attention as a pollutant, our methods and findings will be of interest to anyone needing to manage public artificial lighting.
Address School of Earth and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia, ruth.kamrowski(at)my.jcu.edu.au
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0364-152X ISBN Medium
Area Expedition Conference
Notes PMID:24957580 Approved no
Call Number IDA @ john @ Serial 1283
Permanent link to this record
 

 
Author (up) Longcore, T.; Rich, C.; Mineau, P.; MacDonald, B.; Bert, D.G.; Sullivan, L.M.; Mutrie, E.; Gauthreaux, S.A.J.; Avery, M.L.; Crawford, R.L.; Manville, A.M. 2nd; Travis, E.R.; Drake, D.
Title An estimate of avian mortality at communication towers in the United States and Canada Type Journal Article
Year 2012 Publication PloS one Abbreviated Journal PLoS One
Volume 7 Issue 4 Pages e34025
Keywords Ecology; Accidents/*statistics & numerical data; Altitude; Animals; Birds/*injuries; Canada; Computer Communication Networks/*instrumentation; Conservation of Natural Resources/*statistics & numerical data; *Flight, Animal; *Mortality; Regression Analysis; United States
Abstract Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action.
Address The Urban Wildlands Group, Los Angeles, California, United States of America. longcore@urbanwildlands.org
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:22558082; PMCID:PMC3338802 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 475
Permanent link to this record
 

 
Author (up) Stone, E.L.; Jones, G.; Harris, S.
Title Street lighting disturbs commuting bats Type Journal Article
Year 2009 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 19 Issue 13 Pages 1123-1127
Keywords Animals; Behavior, Animal/*physiology; *Chiroptera; *Cities; Conservation of Natural Resources; Echolocation; Ecosystem; *Flight, Animal; Humans; *Light; Random Allocation; *Transportation; Vocalization, Animal
Abstract Anthropogenic disturbance is a major cause of worldwide declines in biodiversity. Understanding the implications of this disturbance for species and populations is crucial for conservation biologists wishing to mitigate negative effects. Anthropogenic light pollution is an increasing global problem, affecting ecological interactions across a range of taxa and impacting negatively upon critical animal behaviors including foraging, reproduction, and communication (for review see). Almost all bats are nocturnal, making them ideal subjects for testing the effects of light pollution. Previous studies have shown that bat species adapted to foraging in open environments feed on insects attracted to mercury vapor lamps. Here, we use an experimental approach to provide the first evidence of a negative effect of artificial light pollution on the commuting behavior of a threatened bat species. We installed high-pressure sodium lights that mimic the intensity and light spectra of streetlights along commuting routes of lesser horseshoe bats (Rhinolophus hipposideros). Bat activity was reduced dramatically and the onset of commuting behavior was delayed in the presence of lighting, with no evidence of habituation. These results demonstrate that light pollution may have significant negative impacts upon the selection of flight routes by bats.
Address School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK. emma.stone@bristol.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:19540116 Approved no
Call Number IDA @ john @ Serial 100
Permanent link to this record