toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cinzano, P.; Falchi, F.; Elvidge, C.D. url  doi
openurl 
  Title The first World Atlas of the artificial night sky brightness Type Journal Article
  Year 2001 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal MNRAS  
  Volume 328 Issue 3 Pages 689-707  
  Keywords scattering; atmospheric effects; light pollution; site testing; DMSP  
  Abstract We present the first World Atlas of the zenith artificial night sky brightness at sea level. Based on radiance-calibrated high-resolution DMSP satellite data and on accurate modelling of light propagation in the atmosphere, it provides a nearly global picture of how mankind is proceeding to envelop itself in a luminous fog. Comparing the Atlas with the United States Department of Energy (DOE) population density data base, we determined the fraction of population who are living under a sky of given brightness. About two-thirds of the World population and 99 per cent of the population in the United States (excluding Alaska and Hawaii) and European Union live in areas where the night sky is above the threshold set for polluted status. Assuming average eye functionality, about one-fifth of the World population, more than two-thirds of the United States population and more than one half of the European Union population have already lost naked eye visibility of the Milky Way. Finally, about one-tenth of the World population, more than 40 per cent of the United States population and one sixth of the European Union population no longer view the heavens with the eye adapted to night vision, because of the sky brightness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 173  
Permanent link to this record
 

 
Author Dwyer, R.G.; Bearhop, S.; Campbell, H.A.; Bryant, D.M. url  doi
openurl 
  Title Shedding light on light: benefits of anthropogenic illumination to a nocturnally foraging shorebird Type Journal Article
  Year 2013 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol  
  Volume 82 Issue 2 Pages 478-485  
  Keywords Artificial light; Dmsp/Ols; foraging strategy; moonlight; shorebirds; birds; animals; foraging; Tringa totanus; common redshank  
  Abstract Intertidal habitats provide important feeding areas for migratory shorebirds. Anthropogenic developments along coasts can increase ambient light levels at night across adjacent inter-tidal zones. Here, we report the effects of elevated nocturnal light levels upon the foraging strategy of a migratory shorebird (common redshank Tringa totanus) overwintering on an industrialised estuary in Northern Europe. To monitor behaviour across the full intertidal area, individuals were located by day and night using VHF transmitters, and foraging behaviour was inferred from inbuilt posture sensors. Natural light was scored using moon-phase and cloud cover information and nocturnal artificial light levels were obtained using geo-referenced DMSP/OLS night-time satellite imagery at a 1-km resolution. Under high illumination levels, the commonest and apparently preferred foraging behaviour was sight-based. Conversely, birds feeding in areas with low levels of artificial light had an elevated foraging time and fed by touch, but switched to visual rather than tactile foraging behaviour on bright moonlit nights in the absence of cloud cover. Individuals occupying areas which were illuminated continuously by lighting from a large petrochemical complex invariably exhibited a visually based foraging behaviour independently of lunar phase and cloud cover. We show that ambient light levels affect the timing and distribution of foraging opportunities for redshank. We argue that light emitted from an industrial complex improved nocturnal visibility. This allowed sight-based foraging in place of tactile foraging, implying both a preference for sight-feeding and enhanced night-time foraging opportunities under these conditions. The study highlights the value of integrating remotely sensed data and telemetry techniques to assess the effect of anthropogenic change upon nocturnal behaviour and habitat use.  
  Address Centre for Ecology and Conservation, School of Biosciences, University of Exeter, Cornwall Campus, Penryn, Cornwall, TR10 9EZ, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8790 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23190422 Approved no  
  Call Number IDA @ john @ Serial 44  
Permanent link to this record
 

 
Author Elvidge, C. D.; Baugh, K. E.; Dietz, J. B.; Bland, T.; Sutton, P. C.; Kroehl, H. W. url  doi
openurl 
  Title Radiance calibration of DMSP-OLS low-light imaging data of human settlements. Type Journal Article
  Year 1999 Publication Remote Sensing of Environment Abbreviated Journal  
  Volume 68 Issue 1 Pages 77-88  
  Keywords Remote Sensing; DMSP; DMSP-OLS; satellite; night lights; light pollution  
  Abstract Nocturnal lighting is a primary method for enabling human activity. Outdoor lighting is used extensively worldwide in residential, commercial, industrial, public facilities, and roadways. A radiance calibrated nighttime lights image of the United States has been assembled from Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS). The satellite observation of the location and intensity of nocturnal lighting provide a unique view of humanities presence and can be used as a spatial indicator for other variables that are more difficult to observe at a global scale. Examples include the modeling of population density and energy related greenhouse gas emissions.  
  Address NOAA National Geophysical Data Center, Boulder, CO USA  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 930  
Permanent link to this record
 

 
Author Elvidge, C. D.; Erwin, E.H.; Baugh, K.E.; Ziskin, D.; Tuttle, B.T.; Ghosh, T.; Sutton, P.C. url  doi
isbn  openurl
  Title Overview of DMSP nightime lights and future possibilities Type Conference Article
  Year 2009 Publication Joint Urban Remote Sensing Event Abbreviated Journal  
  Volume Issue Pages  
  Keywords Remote Sensing; DMSP; DMSP-OLS; Night lights  
  Abstract The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to collect low-light imaging data of the earth at night. The OLS and its predecessors have collected this style of data on a nightly global basis since 1972. The digital archive of OLS data extends back to 1992. Over the years several global nighttime lights products have been generated. NGDC has now produced a set of global cloud-free nighttime lights products, specifically processed for the detection of changes in lighting emitted by human settlements, spanning 1992-93 to 2008. While the OLS is far from ideal for observing nighttime lights, the DMSP nighttime lights products have been successfully used in modeling the spatial distribution of population density, carbon emissions, and economic activity.  
  Address Earth Observation Group NOAA National Geophysical Data Center Boulder, Colorado 80305 USA; chris.elvidge(at)noaa.gov  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2334-0932 ISBN 978-1-4244-3461-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2668  
Permanent link to this record
 

 
Author Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. url  doi
openurl 
  Title A global poverty map derived from satellite data Type Journal Article
  Year 2009 Publication Computers & Geosciences Abbreviated Journal Computers & Geosciences  
  Volume 35 Issue 8 Pages 1652-1660  
  Keywords Poverty; DMSP; Nighttime lights; World development indicators; light pollution  
  Abstract A global poverty map has been produced at 30 arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2 billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0098-3004 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 123  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: