toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chamorro, E.; Bonnin-Arias, C.; Perez-Carrasco, M.J.; Munoz de Luna, J.; Vazquez, D.; Sanchez-Ramos, C. url  doi
openurl 
  Title Effects of light-emitting diode radiations on human retinal pigment epithelial cells in vitro Type Journal Article
  Year 2013 Publication Photochemistry and Photobiology Abbreviated Journal Photochem Photobiol  
  Volume 89 Issue 2 Pages 468-473  
  Keywords Human Health; Apoptosis/*radiation effects; Biological Markers/metabolism; Caspases/metabolism; Cell Survival/radiation effects; DNA Damage; Epithelial Cells/cytology/metabolism/*radiation effects; Histones/metabolism; Humans; Light; Membrane Potential, Mitochondrial/*radiation effects; Mitochondria/*radiation effects; Photoperiod; Primary Cell Culture; Reactive Oxygen Species/metabolism; Retinal Pigment Epithelium/cytology/metabolism/*radiation effects  
  Abstract Human visual system is exposed to high levels of natural and artificial lights of different spectra and intensities along lifetime. Light-emitting diodes (LEDs) are the basic lighting components in screens of PCs, phones and TV sets; hence it is so important to know the implications of LED radiations on the human visual system. The aim of this study was to investigate the effect of LEDs radiations on human retinal pigment epithelial cells (HRPEpiC). They were exposed to three light-darkness (12 h/12 h) cycles, using blue-468 nm, green-525 nm, red-616 nm and white light. Cellular viability of HRPEpiC was evaluated by labeling all nuclei with DAPI; Production of reactive oxygen species (ROS) was determined by H2DCFDA staining; mitochondrial membrane potential was quantified by TMRM staining; DNA damage was determined by H2AX histone activation, and apoptosis was evaluated by caspases-3,-7 activation. It is shown that LED radiations decrease 75-99% cellular viability, and increase 66-89% cellular apoptosis. They also increase ROS production and DNA damage. Fluorescence intensity of apoptosis was 3.7% in nonirradiated cells and 88.8%, 86.1%, 83.9% and 65.5% in cells exposed to white, blue, green or red light, respectively. This study indicates three light-darkness (12 h/12 h) cycles of exposure to LED lighting affect in vitro HRPEpiC.  
  Address Neuro-Computing and Neuro-Robotics Research Group, Universidad Complutense de Madrid, Madrid, Spain. eva.chamorro@opt.ucm.es  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-8655 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22989198 Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 511  
Permanent link to this record
 

 
Author Oesch-Bartlomowicz, B.; Weiss, C.; Dietrich, C.; Oesch, F. url  doi
openurl 
  Title Circadian rhythms and chemical carcinogenesis: Potential link. An overview Type Journal Article
  Year 2009 Publication Mutation Research Abbreviated Journal Mutat Res  
  Volume 680 Issue 1-2 Pages 83-86  
  Keywords Human Health; Animals; Carcinogens/*toxicity; Cell Cycle/physiology; Cell Cycle Proteins/physiology; Circadian Rhythm/*drug effects/physiology; DNA/drug effects; DNA Damage; DNA Repair; Homeostasis/physiology; Humans; Neoplasms/*etiology/physiopathology; Period Circadian Proteins/metabolism  
  Abstract Circadian rhythm is an integral and not replaceable part of the organism's homeostasis. Its signalling is multidimensional, overlooking global networks such as chromatin remodelling, cell cycle, DNA damage and repair as well as nuclear receptors function. Understanding its global networking will allow us to follow up not only organism dysfunction and pathology (including chemical carcinogenesis) but well-being in general having in mind that time is not always on our side.  
  Address ECNIS Unit, University of Mainz, D-55131 Mainz, Germany. oeschb@uni-mainz.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0027-5107 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19836463 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 790  
Permanent link to this record
 

 
Author Stevens, R.G.; Brainard, G.C.; Blask, D.E.; Lockley, S.W.; Motta, M.E. url  doi
openurl 
  Title Adverse health effects of nighttime lighting: comments on American Medical Association policy statement Type Journal Article
  Year 2013 Publication American Journal of Preventive Medicine Abbreviated Journal Am J Prev Med  
  Volume 45 Issue 3 Pages 343-346  
  Keywords American Medical Association; Cell Cycle/physiology; Circadian Rhythm/*physiology; DNA Damage/physiology; *Health Policy; Humans; Lighting/*adverse effects; United States  
  Abstract The American Medical Association House of Delegates in June of 2012 adopted a policy statement on nighttime lighting and human health. This major policy statement summarizes the scientific evidence that nighttime electric light can disrupt circadian rhythms in humans and documents the rapidly advancing understanding from basic science of how disruption of circadian rhythmicity affects aspects of physiology with direct links to human health, such as cell cycle regulation, DNA damage response, and metabolism. The human evidence is also accumulating, with the strongest epidemiologic support for a link of circadian disruption from light at night to breast cancer. There are practical implications of the basic and epidemiologic science in the form of advancing lighting technologies that better accommodate human circadian rhythmicity.  
  Address University of Connecticut Health Center, Farmington, Connecticut 06030-6325, USA. bugs@uchc.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0749-3797 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23953362 Approved no  
  Call Number IDA @ john @ Serial 130  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: