|   | 
Details
   web
Records
Author Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.-O.; van der Horst, G.T.J.; Batschauer, A.; Ahmad, M.
Title The cryptochromes: blue light photoreceptors in plants and animals Type Journal Article
Year 2011 Publication Annual Review of Plant Biology Abbreviated Journal Annu Rev Plant Biol
Volume 62 Issue Pages 335-364
Keywords Adenosine Triphosphate/metabolism; Animals; Cryptochromes/chemistry/classification/*physiology; DNA Repair; Deoxyribodipyrimidine Photo-Lyase/chemistry/classification/physiology; Homing Behavior; Insects/physiology; *Light Signal Transduction; Magnetics; Mice; Oxidation-Reduction; Phosphorylation/physiology; Plants/*metabolism; blue light
Abstract Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.
Address Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. i.chaves@erasmusmc.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1543-5008 ISBN Medium
Area Expedition Conference
Notes PMID:21526969 Approved no
Call Number IDA @ john @ Serial 341
Permanent link to this record
 

 
Author Oesch-Bartlomowicz, B.; Weiss, C.; Dietrich, C.; Oesch, F.
Title Circadian rhythms and chemical carcinogenesis: Potential link. An overview Type Journal Article
Year 2009 Publication Mutation Research Abbreviated Journal Mutat Res
Volume 680 Issue 1-2 Pages 83-86
Keywords Human Health; Animals; Carcinogens/*toxicity; Cell Cycle/physiology; Cell Cycle Proteins/physiology; Circadian Rhythm/*drug effects/physiology; DNA/drug effects; DNA Damage; DNA Repair; Homeostasis/physiology; Humans; Neoplasms/*etiology/physiopathology; Period Circadian Proteins/metabolism
Abstract Circadian rhythm is an integral and not replaceable part of the organism's homeostasis. Its signalling is multidimensional, overlooking global networks such as chromatin remodelling, cell cycle, DNA damage and repair as well as nuclear receptors function. Understanding its global networking will allow us to follow up not only organism dysfunction and pathology (including chemical carcinogenesis) but well-being in general having in mind that time is not always on our side.
Address ECNIS Unit, University of Mainz, D-55131 Mainz, Germany. oeschb@uni-mainz.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-5107 ISBN Medium
Area Expedition Conference
Notes PMID:19836463 Approved no
Call Number LoNNe @ kagoburian @ Serial 790
Permanent link to this record