toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bennie, J.; Davies, T.W.; Inger, R.; Gaston, K.J.; Chisholm, R. url  doi
openurl 
  Title Mapping artificial lightscapes for ecological studies Type Journal Article
  Year 2014 Publication Methods in Ecology and Evolution Abbreviated Journal Methods Ecol Evol  
  Volume 5 Issue 6 Pages 534-540  
  Keywords light pollution; urban ecology; landscape ecology; diurnal; nocturnal; night; light  
  Abstract Artificial illumination of the night is increasing globally. There is growing evidence of a range of ecological impacts of artificial light and awareness of light pollution as a significant environmental issue. In urban and suburban areas, complex spatial patterns of light sources, structures and vegetation create a highly heterogeneous night-time light environment for plants and animals.

We developed a method for modelling the night-time light environment at a high spatial resolution in a small urban area for ecological studies. We used the position and height of street lights, and digital terrain and surface models, to predict the direct light intensity at different wavelengths at different heights above the ground surface.

Validation against field measurements of night-time light showed that modelled light intensities in the visible and ultraviolet portions of the spectrum were accurate.

We show how this model can be used to map biologically relevant lightscapes across an urban landscape. We also illustrate the utility of the model using night-time light maps as resistance surfaces in the software package circuitscape to predict potential movement of model nocturnal species between habitat patches and to identify key corridors and barriers to movement and dispersal.

Understanding the ecological effects of artificial light requires knowledge of the light environment experienced by organisms throughout the diurnal and annual cycles, during periods of activity and rest and during different life stages. Our approach to high-resolution mapping of artificial lightscapes can be adapted to the sensitivity to light of different species and to other urban, suburban, rural and industrial landscapes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2041210X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 171  
Permanent link to this record
 

 
Author Gaston, K.J.; Bennie, J. url  doi
openurl 
  Title Demographic effects of artificial nighttime lighting on animal populations Type Book Chapter
  Year 2014 Publication Environmental Reviews Abbreviated Journal Environ. Rev.  
  Volume 22 Issue 4 Pages 323-330  
  Keywords diurnal; lighting; night; nocturnal; light pollution; light at night; Photoperiodism; demography; demographics; population dynamics  
  Abstract Artificial lighting, especially but not exclusively through street lights, has transformed the nighttime environment in much of the world. Impacts have been identified across multiple levels of biological organization and process. The influences, however, on population dynamics, particularly through the combined effects on the key demographic rates (immigration, births, deaths, emigration) that determine where individual species occur and in what numbers, have not previously been well characterized. The majority of attention explicitly on demographic parameters to date has been placed on the attraction of organisms to lights, and thus effectively local immigration, the large numbers of individuals that can be involved, and then to some extent the mortality that can often result. Some of the most important influences of nighttime lighting, however, are likely more subtle and less immediately apparent to the human observer. Particularly significant are effects of nighttime lighting on demography that act through (i) circadian clocks and photoperiodism and thence on birth rates; (ii) time partitioning and thence on death rates; and (iii) immigration/emigration through constraining the movements of individuals amongst habitat networks, especially as a consequence of continuously lit linear features such as roads and footpaths. Good model organisms are required to enable the relative consequences of such effects to be effectively determined, and a wider consideration of the effects of artificial light at night is needed in demographic studies across a range of species.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9EZ, UK  
  Corporate Author Thesis  
  Publisher Canadian Science Publishing Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1181-8700 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 317  
Permanent link to this record
 

 
Author Gaston, K.J.; Duffy, J.P.; Gaston, S.; Bennie, J.; Davies, T.W. url  doi
openurl 
  Title Human alteration of natural light cycles: causes and ecological consequences Type Journal Article
  Year 2014 Publication Oecologia Abbreviated Journal Oecologia  
  Volume 176 Issue 4 Pages 917-931  
  Keywords Ecology; Day; Diurnal; Night; Nocturnal; Skyglow; Review  
  Abstract Artificial light at night is profoundly altering natural light cycles, particularly as perceived by many organisms, over extensive areas of the globe. This alteration comprises the introduction of light at night at places and times at which it has not previously occurred, and with different spectral signatures. Given the long geological periods for which light cycles have previously been consistent, this constitutes a novel environmental pressure, and one for which there is evidence for biological effects that span from molecular to community level. Here we provide a synthesis of understanding of the form and extent of this alteration, some of the key consequences for terrestrial and aquatic ecosystems, interactions and synergies with other anthropogenic pressures on the environment, major uncertainties, and future prospects and management options. This constitutes a compelling example of the need for a thoroughly interdisciplinary approach to understanding and managing the impact of one particular anthropogenic pressure. The former requires insights that span molecular biology to ecosystem ecology, and the latter contributions of biologists, policy makers and engineers.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK, k.j.gaston@exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-8549 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25239105 Approved no  
  Call Number IDA @ john @ Serial 371  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: