toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Davies, T.W.; Duffy, J.P.; Bennie, J.; Gaston, K.J. url  doi
openurl 
  Title Stemming the Tide of Light Pollution Encroaching into Marine Protected Areas: Light pollution in marine protected areas Type Journal Article
  Year 2015 Publication Conservation Letters Abbreviated Journal Conservation Lett.  
  Volume 9 Issue 3 Pages 164–171  
  Keywords Animals; Anthropogenic disturbance; artificial light; marine ecosystems; marine protected areas; pollution  
  Abstract Many marine ecosystems are shaped by regimes of natural light guiding the behavior of their constituent species. As evidenced from terrestrial systems, the global introduction of nighttime lighting is likely influencing these behaviors, restructuring marine ecosystems, and compromising the services they provide. Yet the extent to which marine habitats are exposed to artificial light at night is unknown. We quantified nighttime artificial light across the world's network of marine protected areas (MPAs). Artificial light is widespread and increasing in a large percentage of MPAs. While increases are more common among MPAs associated with human activity, artificial light is encroaching into a large proportion of even those marine habitats protected with the strongest legislative designations. Given the current lack of statutory tools, we propose that allocating “Marine Dark Sky Park” status to MPAs will help incentivize responsible authorities to hold back the advance of artificial light.  
  Address University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK. Thomas.Davies(at)exeter.ac.uk  
  Corporate Author Thesis  
  Publisher Wiley Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1755263X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1222  
Permanent link to this record
 

 
Author Schoech, S.J.; Bowman, R.; Hahn, T.P.; Goymann, W.; Schwabl, I.; Bridge, E.S. url  doi
openurl 
  Title The effects of low levels of light at night upon the endocrine physiology of western scrub-jays (Aphelocoma californica) Type Journal Article
  Year 2013 Publication Journal of Experimental Zoology. Part A, Ecological Genetics and Physiology Abbreviated Journal J Exp Zool A Ecol Genet Physiol  
  Volume 319 Issue 9 Pages 527-538  
  Keywords Animals; Corticosterone/blood; Ecosystem; Female; *Light; Male; Melatonin/blood; Passeriformes/*physiology; *Photoperiod; Reproduction/*physiology; Testosterone/blood  
  Abstract Florida scrub-jays (Aphelocoma coerulescens) in the suburbs breed earlier than jays in native habitat. Amongst the possible factors that influence this advance (e.g., food availability, microclimate, predator regime, etc.), is exposure to artificial lights at night (LAN). LAN could stimulate the reproductive axis of the suburban jays. Alternatively, LAN could inhibit pineal melatonin (MEL), thus removing its inhibitory influence on the reproductive axis. Because Florida scrub-jays are a threatened species, we used western scrub-jays (Aphelocoma californica) to investigate the effects of LAN upon reproductive hormones and melatonin. Jays were held under conditions in which the dark-phase of the light:dark cycle was without illumination and then under low levels of LAN. Under both conditions, birds were exposed first to short-days (9.5L:14.5D) that were gradually increased to long-days (14.5L:9.5D). At various times, blood samples were collected during the light part of the cycle to measure reproductive hormones (luteinizing hormone, LH; testosterone, T; and estradiol, E2 ). Similarly, samples to assess melatonin were collected during the dark. In males, LAN caused a depression in LH levels and levels were approximately 4x greater under long- than short-days. In females, there was no effect of LAN or photoperiod upon LH. LAN resulted in depressed T levels in females, although there was no effect on T in males. E2 levels in both sexes were lower under LAN than under an unlighted dark-phase. Paradoxically, MEL was higher in jays under LAN, and under long-days. MEL did not differ by sex. LAN disrupted the extraordinarily strong correlation between T and E2 that existed under unlighted nocturnal conditions. Overall, our findings fail to support the hypothesis that LAN stimulates the reproductive axis. Rather, the data demonstrate that LAN tends to inhibit reproductive hormone secretion, although not in a consistent fashion between the sexes.  
  Address Department of Biological Sciences, University of Memphis, Memphis, Tennessee  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-5223 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23970442 Approved no  
  Call Number IDA @ john @ Serial 37  
Permanent link to this record
 

 
Author Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F. url  doi
openurl 
  Title Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems Type Journal Article
  Year 2011 Publication PloS one Abbreviated Journal PLoS One  
  Volume 6 Issue 3 Pages e17307  
  Keywords Berlin; *Cities; *Ecosystem; Environmental Pollution/*adverse effects/analysis; *Light; Seasons; *Weather  
  Abstract The diurnal cycle of light and dark is one of the strongest environmental factors for life on Earth. Many species in both terrestrial and aquatic ecosystems use the level of ambient light to regulate their metabolism, growth, and behavior. The sky glow caused by artificial lighting from urban areas disrupts this natural cycle, and has been shown to impact the behavior of organisms, even many kilometers away from the light sources. It could be hypothesized that factors that increase the luminance of the sky amplify the degree of this “ecological light pollution”. We show that cloud coverage dramatically amplifies the sky luminance, by a factor of 10.1 for one location inside of Berlin and by a factor of 2.8 at 32 km from the city center. We also show that inside of the city overcast nights are brighter than clear rural moonlit nights, by a factor of 4.1. These results have important implications for choronobiological and chronoecological studies in urban areas, where this amplification effect has previously not been considered.  
  Address Institute for Space Sciences, Freie Universitat Berlin, Berlin, Germany. christopher.kyba@wew.fu-berlin.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21399694; PMCID:PMC3047560 Approved no  
  Call Number IDA @ john @ Serial 20  
Permanent link to this record
 

 
Author Nordt, A.; Klenke, R. url  doi
openurl 
  Title Sleepless in town--drivers of the temporal shift in dawn song in urban European blackbirds Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 8 Pages e71476  
  Keywords Animals; Automobiles; Cities; Ecosystem; Germany; Humans; Light; Male; Noise; Photoperiod; Sleep; Songbirds/*physiology; Urban Population; *Vocalization, Animal; dawn chorus; morning chorus  
  Abstract Organisms living in urban environments are exposed to different environmental conditions compared to their rural conspecifics. Especially anthropogenic noise and artificial night light are closely linked to urbanization and pose new challenges to urban species. Songbirds are particularly affected by these factors, because they rely on the spread of acoustic information and adjust their behaviour to the rhythm of night and day, e.g. time their dawn song according to changing light intensities. Our aim was to clarify the specific contributions of artificial night light and traffic noise on the timing of dawn song of urban European Blackbirds (Turdus merula). We investigated the onset of blackbird dawn song along a steep urban gradient ranging from an urban forest to the city centre of Leipzig, Germany. This gradient of anthropogenic noise and artificial night light was reflected in the timing of dawn song. In the city centre, blackbirds started their dawn song up to 5 hours earlier compared to those in semi-natural habitats. We found traffic noise to be the driving factor of the shift of dawn song into true night, although it was not completely separable from the effects of ambient night light. We additionally included meteorological conditions into the analysis and found an effect on the song onset. Cloudy and cold weather delayed the onset, but cloud cover was assumed to reflect night light emissions, thus, amplified sky luminance and increased the effect of artificial night light. Beside these temporal effects, we also found differences in the spatial autocorrelation of dawn song onset showing a much higher variability in noisy city areas than in rural parks and forests. These findings indicate that urban hazards such as ambient noise and light pollution show a manifold interference with naturally evolved cycles and have significant effects on the activity patterns of urban blackbirds.  
  Address Helmholtz Centre for Environmental Research – UFZ, Department of Conservation Biology, Leipzig, Germany. anja.nordt@ufz.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23940759; PMCID:PMC3737108 Approved no  
  Call Number IDA @ john @ Serial 43  
Permanent link to this record
 

 
Author Pu, G.; Zen, D.; Mo, L.; He, W.; Zhou, L.; Huang, K.; Liao, J.; Qiu, S.; Chai, S. url  doi
openurl 
  Title Does artificial light at night change the impact of silver nanoparticles on microbial decomposers and leaf litter decomposition in streams? Type Journal Article
  Year 2019 Publication Environmental Science: Nano Abbreviated Journal Environ. Sci.: Nano  
  Volume 6 Issue Pages 1728-1739  
  Keywords Ecology; silver nanoparticles; aquatic ecosystems  
  Abstract The toxic effects of silver nanoparticles (AgNP) to aquatic species and ecosystem processes have been the focus of increasing research in ecology, but their effects under different environmental stressors, such as the ongoing anthropogenic artificial light at night (ALAN) which can cause a series of ecological effects and will potentially interact with other stressors, remain poorly understood. Here, we aimed to assess the combined effects of AgNP and ALAN on the activities and community structure of fungi and bacteria associated to plant litter in a stream. The results showed that ALAN not only led to changes in the average hydrodynamic diameter, ζ-potential and dissolved concentration of AgNP but also inhibited the enzyme activities of leucine-aminopeptidase (LAP), polyphenol oxidase (PPO) and peroxidase (PER) associated to microbes involved in litter decomposition. The negative effect of AgNP on the decomposition of Pterocarya stenoptera leaf litter was alleviated by ALAN owing to the reduction of Ag+ concentration in the microcosm and lignin content in the leaf litter in the A-AgNP treatments, the enhancement of β-glucosidase (β-G) activities and the increase of microbial biomass. The effect of ALAN alone or combined with AgNP or AgNO3 on the taxonomic composition of fungi was much greater than that on bacteria. Linear discriminant analysis effect size (LEfSe) demonstrated that each treatment had its own fungal and bacterial indicator taxa, from the phylum to genus levels, indicating that the microbial communities associated with litter decomposition can change their constituent taxa to cope with different stressors. These results reveal that ALAN can decrease the toxicity of AgNP and highlight the importance of considering ALAN during the assessment of the risk posed by nanoparticles to freshwater biota and ecosystem processes.  
  Address Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China; pukouchy(at)hotmail.com  
  Corporate Author Thesis  
  Publisher Royal Astronomical Society of Chemistry Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 2051-8153 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2332  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: