toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gaston, K.J. url  doi
openurl 
  Title Nighttime Ecology: The “Nocturnal Problem” Revisited Type Journal Article
  Year 2019 Publication The American Naturalist Abbreviated Journal The American Naturalist  
  Volume 193 Issue 4 Pages 481-502  
  Keywords Ecology; activity; diel; ecosystems; macroecology; nighttime; nocturnal; time partitioning  
  Abstract The existence of a synthetic program of research on what was then termed the “nocturnal problem” and that we might now call “nighttime ecology” was declared more than 70 years ago. In reality, this failed to materialize, arguably as a consequence of practical challenges in studying organisms at night and instead concentrating on the existence of circadian rhythms, the mechanisms that give rise to them, and their consequences. This legacy is evident to this day, with consideration of the ecology of the nighttime markedly underrepresented in ecological research and literature. However, several factors suggest that it would be timely to revive the vision of a comprehensive research program in nighttime ecology. These include (i) that the study of the ecology of the night is being revolutionized by new and improved technologies; (ii) suggestions that, far from being a minor component of biodiversity, a high proportion of animal species are active at night; (iii) that fundamental questions about differences and connections between the ecology of the daytime and the nighttime remain largely unanswered; and (iv) that the nighttime environment is coming under severe anthropogenic pressure. In this article, I seek to reestablish nighttime ecology as a synthetic program of research, highlighting key focal topics and questions and providing an overview of the current state of understanding and developments.  
  Address Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom; and Wissenschaftskolleg zu Berlin, Institute for Advanced Study, Wallotstrasse 19, 14193 Berlin, Germany; k.j.gaston(at)exeter.ac.uk  
  Corporate Author Thesis  
  Publisher University of Chicago Place of Publication Editor  
  Language (up) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-0147 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2254  
Permanent link to this record
 

 
Author Pu, G.; Zen, D.; Mo, L.; He, W.; Zhou, L.; Huang, K.; Liao, J.; Qiu, S.; Chai, S. url  doi
openurl 
  Title Does artificial light at night change the impact of silver nanoparticles on microbial decomposers and leaf litter decomposition in streams? Type Journal Article
  Year 2019 Publication Environmental Science: Nano Abbreviated Journal Environ. Sci.: Nano  
  Volume 6 Issue Pages 1728-1739  
  Keywords Ecology; silver nanoparticles; aquatic ecosystems  
  Abstract The toxic effects of silver nanoparticles (AgNP) to aquatic species and ecosystem processes have been the focus of increasing research in ecology, but their effects under different environmental stressors, such as the ongoing anthropogenic artificial light at night (ALAN) which can cause a series of ecological effects and will potentially interact with other stressors, remain poorly understood. Here, we aimed to assess the combined effects of AgNP and ALAN on the activities and community structure of fungi and bacteria associated to plant litter in a stream. The results showed that ALAN not only led to changes in the average hydrodynamic diameter, ζ-potential and dissolved concentration of AgNP but also inhibited the enzyme activities of leucine-aminopeptidase (LAP), polyphenol oxidase (PPO) and peroxidase (PER) associated to microbes involved in litter decomposition. The negative effect of AgNP on the decomposition of Pterocarya stenoptera leaf litter was alleviated by ALAN owing to the reduction of Ag+ concentration in the microcosm and lignin content in the leaf litter in the A-AgNP treatments, the enhancement of β-glucosidase (β-G) activities and the increase of microbial biomass. The effect of ALAN alone or combined with AgNP or AgNO3 on the taxonomic composition of fungi was much greater than that on bacteria. Linear discriminant analysis effect size (LEfSe) demonstrated that each treatment had its own fungal and bacterial indicator taxa, from the phylum to genus levels, indicating that the microbial communities associated with litter decomposition can change their constituent taxa to cope with different stressors. These results reveal that ALAN can decrease the toxicity of AgNP and highlight the importance of considering ALAN during the assessment of the risk posed by nanoparticles to freshwater biota and ecosystem processes.  
  Address Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, China; pukouchy(at)hotmail.com  
  Corporate Author Thesis  
  Publisher Royal Astronomical Society of Chemistry Place of Publication Editor  
  Language (up) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2051-8153 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2332  
Permanent link to this record
 

 
Author Pu, G.; Zeng, D.; Mo, L.; Liao, J.; Chen, X. url  doi
openurl 
  Title Artificial Light at Night Alleviates the Negative Effect of Pb on Freshwater Ecosystems Type Journal Article
  Year 2019 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci  
  Volume 20 Issue 6 Pages  
  Keywords Ecology; freshwater; ecosystems; metal pollution  
  Abstract Artificial light at night (ALAN) is an increasing phenomenon worldwide that can cause a series of biological and ecological effects, yet little is known about its potential interaction with other stressors in aquatic ecosystems. Here, we tested whether the impact of lead (Pb) on litter decomposition was altered by ALAN exposure using an indoor microcosm experiment. The results showed that ALAN exposure alone significantly increased leaf litter decomposition, decreased the lignin content of leaf litter, and altered fungal community composition and structure. The decomposition rate was 51% higher in Pb with ALAN exposure treatments than in Pb without ALAN treatments, resulting in increased microbial biomass, beta-glucosidase (beta-G) activity, and the enhanced correlation between beta-G and litter decomposition rate. These results indicate that the negative effect of Pb on leaf litter decomposition in aquatic ecosystems may be alleviated by ALAN. In addition, ALAN exposure also alters the correlation among fungi associated with leaf litter decomposition. In summary, this study expands our understanding of Pb toxicity on litter decomposition in freshwater ecosystems and highlights the importance of considering ALAN when assessing environmental metal pollutions.  
  Address College of Life Science, Guangxi Normal University, Guilin 541006, China. chenxx7276@163.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30884876; PMCID:PMC6471329 Approved no  
  Call Number GFZ @ kyba @ Serial 2334  
Permanent link to this record
 

 
Author Czarnecka, M.; Kakareko, T.; Jermacz, Ł.; Pawlak, R.; Kobak, J. url  doi
openurl 
  Title Combined effects of nocturnal exposure to artificial light and habitat complexity on fish foraging Type Journal Article
  Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume 684 Issue Pages 14-22  
  Keywords Animal; fishes; Perca fluviatilis; Gammarus fossarum; gammarids; aquatic ecosystems  
  Abstract Due to the widespread use of artificial light, freshwater ecosystems in urban areas at night are often subjected to light of intensities exceeding that of the moonlight. Nocturnal dim light could modify fish behaviour and benefit visual predators because of enhanced foraging success compared to dark nights. However, effects of nocturnal light could be mitigated by the presence of structured habitats providing refuges for prey. We tested in laboratory experiments whether nocturnal light of low intensity (2 lx) increases foraging efficiency of the Eurasian perch (Perca fluviatilis) on invertebrate prey (Gammarus fossarum). The tests were conducted at dusk and night under two light regimes: natural cycle with dark nights and disturbed cycle with artificially illuminated nights, in habitats differing in structural complexity: sand and woody debris. We found that nocturnal illumination significantly enhanced the consumption of gammarids by fish compared to dark nights. In addition, the perch was as effective predator in illuminated nights (2 lx) as at dusk (10 lx). Woody debris provided an effective refuge only in combination with undisturbed darkness, but not in illuminated nights. Our results suggest that nocturnal illumination in aquatic ecosystems may contribute to significant reductions in invertebrate population sizes through fish predation. The loss of darkness reduces the possibility of using shelters by invertebrates and hence the effects of elevated light levels at night could not be mitigated by an increased habitat complexity.  
  Address Department of Ecology and Biogeography, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Toruń, Poland; mczarn(at)umk.pl  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language (up) English Summary Language Original Title  
  Series Editor English Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2507  
Permanent link to this record
 

 
Author Maggi, E.; Bongiorni, L.; Fontanini, D.; Capocchi, A.; Dal Bello, M.; Giacomelli, A.; Benedetti‐Cecchi, L. url  doi
openurl 
  Title Artificial light at night erases positive interactions across trophic levels Type Journal Article
  Year 2019 Publication Functional Ecology Abbreviated Journal Funct Ecol  
  Volume in press Issue Pages 1365-2435.13485  
  Keywords Ecology; Bacteria; Ecosystems  
  Abstract Artificial light at night (ALAN) is one of the most recently recognized sources of anthropogenic disturbance, with potentially severe effects on biological systems that are still to be fully explored. Among marine ecosystems, high shore habitats are those more likely to be impacted by ALAN, due to a more intense exposition to outdoor nocturnal lightings (mostly from lamps along coastal streets and promenades, or within harbors, ports and marinas).

2.By performing in situ nocturnal manipulations of a direct source of white LED light and presence of herbivores in a Mediterranean high‐shore habitat, we assessed the interactive effects of light pollution and grazing on two key functional components of the epilithic microbial community (the cyanobacteria, as the main photoautotrophic component, and the other bacteria, mainly dominated by heterotrophs) developing on rocky shores.

3.Results showed an unexpected increase in the diversity of epilithic bacterial biofilm at unlit sites in the presence of grazers, that was more evident on the other (mainly heterotrophic) bacterial component, when giving weight to more abundant families. This effect was likely related to the mechanical removal of dead cells through the grazing activity of consumers. ALAN significantly modified this scenario, by reducing the density of grazers and thus erasing their effects on bacteria, and by increasing the diversity of more abundant cyanobacterial families.

4.Overall, direct and indirect effects on ALAN resulted in a significant increase in the diversity of the photoautotrophic component and a decrease in the heterotrophic one, likely affecting key ecosystem functions acting on rocky shore habitats.

5.ALAN may represent a threat for natural systems through the annihilation of positive interactions across trophic levels, potentially impairing the relationship between biodiversity and functioning of ecosystems and interacting with other global and local stressors currently impinging on coastal areas.
 
  Address Dip. di Biologia, CoNISMa, Università di Pisa, Pisa, Italy; elena.maggi(at)unipi.it  
  Corporate Author Thesis  
  Publisher British Ecological Society Place of Publication Editor  
  Language (up) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-8463 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2746  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: