|   | 
Details
   web
Records
Author Ayalon, I.; de Barros Marangoni, L.F.; Benichou, J.I.C.; Avisar, D.; Levy, O.
Title Red Sea corals under Artificial Light Pollution at Night (ALAN) undergo oxidative stress and photosynthetic impairment Type Journal Article
Year 2019 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume 25 Issue 12 Pages 4194-4207
Keywords Animals; *Anthozoa; Coral Reefs; Ecosystem; Indian Ocean; Oxidative Stress; Photosynthesis; Alan; Ros; corals; light pollution; photosynthesis; physiology
Abstract Coral reefs represent the most diverse marine ecosystem on the planet, yet they are undergoing an unprecedented decline due to a combination of increasing global and local stressors. Despite the wealth of research investigating these stressors, Artificial Light Pollution at Night (ALAN) or “ecological light pollution” represents an emerging threat that has received little attention in the context of coral reefs, despite the potential of disrupting the chronobiology, physiology, behavior, and other biological processes of coral reef organisms. Scleractinian corals, the framework builders of coral reefs, depend on lunar illumination cues to synchronize their biological rhythms such as behavior, reproduction and physiology. While, light pollution (POL) may mask and lead de-synchronization of these biological rhythms process. To reveal if ALAN impacts coral physiology, we have studied two coral species, Acropora eurystoma and Pocillopora damicornis, from the Gulf of Eilat/Aqaba, Red Sea, which is undergoing urban development that has led to severe POL at night. Our two experimental design data revealed that corals exposed to ALAN face an oxidative stress condition, show lower photosynthesis performances measured by electron transport rate (ETR), as well as changes in chlorophyll and algae density parameters. Testing different lights such as Blue LED and White LED spectrum showed more extreme impact in comparison to Yellow LEDs on coral physiology. The finding of this work sheds light on the emerging threat of POL and the impacts on the biology and ecology of Scleractinian corals, and will help to formulate specific management implementations to mitigate its potentially harmful impacts.
Address Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:31512309; PMCID:PMC6900201 Approved no
Call Number GFZ @ kyba @ Serial 2809
Permanent link to this record
 

 
Author O'Connor, J.J.; Fobert, E.K.; Besson, M.; Jacob, H.; Lecchini, D.
Title Live fast, die young: Behavioural and physiological impacts of light pollution on a marine fish during larval recruitment Type Journal Article
Year 2019 Publication Marine Pollution Bulletin Abbreviated Journal Mar Pollut Bull
Volume 146 Issue Pages 908-914
Keywords Animals; Ecosystem; Environmental Pollution/adverse effects; Fishes/growth & development/*physiology; Larva/growth & development/physiology/*radiation effects; Light/*adverse effects; Metamorphosis, Biological/radiation effects; Predatory Behavior/radiation effects; Coral reefs; Fish larvae; Light pollution; Metamorphosis; Recruitment
Abstract Artificial light at night (ALAN) is a recently acknowledged form of anthropogenic pollution of growing concern to the biology and ecology of exposed organisms. Though ALAN can have detrimental effects on physiology and behaviour, we have little understanding of how marine organisms in coastal areas may be impacted. Here, we investigated the effects of ALAN exposure on coral reef fish larvae during the critical recruitment stage, encompassing settlement, metamorphosis, and post-settlement survival. We found that larvae avoided illuminated settlement habitats, however those living under ALAN conditions for 10days post-settlement experienced changes in swimming behaviour and higher susceptibility to nocturnal predation. Although ALAN-exposed fish grew faster and heavier than control fish, they also experienced significantly higher mortality rates by the end of the experimental period. This is the first study on the ecological impacts of ALAN during the early life history of marine fish.
Address Institute for Pacific Coral Reefs, IRCP, 98729, Moorea, French Polynesia; PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia; Laboratoire d'Excellence “CORAIL”, Moorea, French Polynesia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume (down) Series Issue Edition
ISSN 0025-326X ISBN Medium
Area Expedition Conference
Notes PMID:31426235 Approved no
Call Number GFZ @ kyba @ Serial 2812
Permanent link to this record