toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Agbo David, O., Madukwe Chinaza, A., & Anyalewechi Chika, J. url  doi
openurl 
  Title Development of Solar Power Intelligent Street Lights System Type Journal Article
  Year 2019 Publication International Journal of Scientific and Research Publications Abbreviated Journal  
  Volume 9 Issue 6 Pages  
  Keywords Lighting; Energy  
  Abstract The lack of natural light during night time in the urban environment has always been a problem. From people not being able to see where they are going, to the greater chance of being attacked or mugged at night which as we all know is a problem that has been in existence since humans started living together. The main advantage of this system exists in the reduction of costs related to energy consumption by the street light by integrating a vehicle/human detection algorithm into the system. The introduction of this vehicle/human detection algorithm further reduces the power consumption costs. In this project, solar PV is used to supply the energy to charge the battery. The battery later powers the operation of the whole system. The 12- 17V of the solar is buck to a steady 12V for battery charging. A light sensor is connected to the microcontroller that sense the light during day time, when the presence of day light is sensed the microcontroller turns ON the mosfet of the buck converter. If the voltage of the solar PV is greater than 12V, it charges the battery and switches off the load transistor. But at dawn, when the solar PV voltage is less than 12V the microcontroller turn OFF the buck converter mosfet and switch ON the load transistor. When no vehicle or human is detected for 10mins the microcontroller dims the LED lamp. If vehicle or human is detected the microcontroller brighten the LED lamp and inform the next microcontroller to brighten its LED lamp. If the next street light did not detect a vehicle or human after 10 mins it dims the lamp but if it detects a vehicle or human the lamp remain brightened. The microcontroller uses the ultrasonic sensor to detect object and the PIR sensor to detect human. The RF module is used for communication between the microcontrollers to inform each other the presence of vehicle or human.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2971  
Permanent link to this record
 

 
Author (up) Arendt, J. url  doi
openurl 
  Title Biological rhythms during residence in polar regions Type Journal Article
  Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 29 Issue 4 Pages 379-394  
  Keywords *Acclimatization; Activities of Daily Living; Affect; Antarctic Regions; Arctic Regions; *Biological Clocks; *Circadian Rhythm; *Cold Climate; *Cold Temperature; Energy Metabolism; Feeding Behavior; Humans; Melatonin/metabolism; Personnel Staffing and Scheduling; *Photoperiod; Seasonal Affective Disorder/physiopathology/prevention & control/psychology; *Seasons; Sleep; Sleep Disorders, Circadian Rhythm/etiology/physiopathology/*prevention & control/psychology; Time Factors; Workload; Workplace  
  Abstract At Arctic and Antarctic latitudes, personnel are deprived of natural sunlight in winter and have continuous daylight in summer: light of sufficient intensity and suitable spectral composition is the main factor that maintains the 24-h period of human circadian rhythms. Thus, the status of the circadian system is of interest. Moreover, the relatively controlled artificial light conditions in winter are conducive to experimentation with different types of light treatment. The hormone melatonin and/or its metabolite 6-sulfatoxymelatonin (aMT6s) provide probably the best index of circadian (and seasonal) timing. A frequent observation has been a delay of the circadian system in winter. A skeleton photoperiod (2 x 1-h, bright white light, morning and evening) can restore summer timing. A single 1-h pulse of light in the morning may be sufficient. A few people desynchronize from the 24-h day (free-run) and show their intrinsic circadian period, usually >24 h. With regard to general health in polar regions, intermittent reports describe abnormalities in various physiological processes from the point of view of daily and seasonal rhythms, but positive health outcomes are also published. True winter depression (SAD) appears to be rare, although subsyndromal SAD is reported. Probably of most concern are the numerous reports of sleep problems. These have prompted investigations of the underlying mechanisms and treatment interventions. A delay of the circadian system with “normal” working hours implies sleep is attempted at a suboptimal phase. Decrements in sleep efficiency, latency, duration, and quality are also seen in winter. Increasing the intensity of ambient light exposure throughout the day advanced circadian phase and was associated with benefits for sleep: blue-enriched light was slightly more effective than standard white light. Effects on performance remain to be fully investigated. At 75 degrees S, base personnel adapt the circadian system to night work within a week, in contrast to temperate zones where complete adaptation rarely occurs. A similar situation occurs on high-latitude North Sea oil installations, especially when working 18:00-06:00 h. Lack of conflicting light exposure (and “social obligations”) is the probable explanation. Many have problems returning to day work, showing circadian desynchrony. Timed light treatment again has helped to restore normal phase/sleep in a small number of people. Postprandial response to meals is compromised during periods of desynchrony with evidence of insulin resistance and elevated triglycerides, risk factors for heart disease. Only small numbers of subjects have been studied intensively in polar regions; however, these observations suggest that suboptimal light conditions are deleterious to health. They apply equally to people living in temperate zones with insufficient light exposure.  
  Address Centre for Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK. arendtjo@gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22497433; PMCID:PMC3793275 Approved no  
  Call Number IDA @ john @ Serial 143  
Permanent link to this record
 

 
Author (up) Baker, J.A. url  doi
openurl 
  Title Energy management control system for fluorescent lighting Type Journal Article
  Year 1998 Publication Renewable Energy Abbreviated Journal  
  Volume 13 Issue 1 Pages 148  
  Keywords Energy  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 991  
Permanent link to this record
 

 
Author (up) Beccali, M.; Bonomolo, M.; Leccese, F.; Lista, D.; Salvadori, G. url  doi
openurl 
  Title On the impact of safety requirements, energy prices and investment costs in street lighting refurbishment design Type Journal Article
  Year 2018 Publication Energy Abbreviated Journal Energy  
  Volume in press Issue Pages in press  
  Keywords Lighting; Economics; Energy; Planning  
  Abstract Street lighting is an indispensable feature for the night landscape of cities. It is important for road safety, users visual comfort, crime prevention and to augment the perceived personal safety. Realize and maintain an adequate street lighting service is very expensive for municipalities with significant impact on their budgets. For this reason, special attention should be paid to the design of new street lighting systems and to the refurbishment of existing ones, since many of them are inadequate. In light of this it is very important to implement street lighting designs that fulfil lighting requirements avoiding energy waste and light pollution and, at the same time, result economically sustainable for municipalities. In this paper, an original step by step methodology for the lighting, energy and economic analysis of street lighting refurbishment designs has been introduced and explained in detail. The methodology is suitable for use in cities of different sizes. As an applicative example, the methodology has been tested in the town of Pontedera (Italy) and the results are discussed, also providing a sensitivity analysis of the economic feasibility with respect to the variations of electricity prices and investment costs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-5442 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2020  
Permanent link to this record
 

 
Author (up) Bensch, G.; Peters, J.; Sievert, M. url  doi
openurl 
  Title The lighting transition in rural Africa — From kerosene to battery-powered LED and the emerging disposal problem Type Journal Article
  Year 2017 Publication Energy for Sustainable Development Abbreviated Journal Energy for Sustainable Development  
  Volume 39 Issue Pages 13-20  
  Keywords Lighting; Energy  
  Abstract People without electricity access, numbering today more than 500 million in rural Africa alone, have been using dim and sooty kerosene lamps and candles for their lighting purposes for decades. In the present paper, current lighting usage patterns are systematically assessed using detailed new survey data from seven countries across Sub-Saharan Africa. The data makes evident that a transition has taken place in recent years, both unnoticed by and without external support from governmental or non-governmental organizations: the rural population without electricity in Africa has replaced kerosene lights and candles by simple, yet more efficient and cleaner LED lamps powered by non-rechargeable batteries. Nevertheless, we also show that the discharged batteries are generally disposed of inappropriately in latrines or the nature. The toxic content of many dry-cell batteries and their accumulation at local litter hotspots may have harmful repercussions on health and the environment. We conclude by suggesting that rapid action is needed to, first, install an effective monitoring system on batteries that enter the continent and, second, put in place an appropriate waste management system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0973-0826 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2193  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: