|   | 
Details
   web
Records
Author Behar-Cohen, F.; Martinsons, C.; Vienot, F.; Zissis, G.; Barlier-Salsi, A.; Cesarini, J.P.; Enouf, O.; Garcia, M.; Picaud, S.; Attia, D.
Title Light-emitting diodes (LED) for domestic lighting: any risks for the eye? Type Journal Article
Year 2011 Publication Progress in Retinal and eye Research Abbreviated Journal Prog Retin Eye Res
Volume 30 Issue 4 Pages 239-257
Keywords Animals; Biomass; Circadian Rhythm/physiology; Environmental Exposure; Eye Diseases/*etiology/pathology/physiopathology; Humans; *Light/adverse effects; Lighting/*methods; Reflex, Pupillary/physiology; Retina/pathology; Risk Assessment; *Semiconductors; Time Factors
Abstract Light-emitting diodes (LEDs) are taking an increasing place in the market of domestic lighting because they produce light with low energy consumption. In the EU, by 2016, no traditional incandescent light sources will be available and LEDs may become the major domestic light sources. Due to specific spectral and energetic characteristics of white LEDs as compared to other domestic light sources, some concerns have been raised regarding their safety for human health and particularly potential harmful risks for the eye. To conduct a health risk assessment on systems using LEDs, the French Agency for Food, Environmental and Occupational Health & Safety (ANSES), a public body reporting to the French Ministers for ecology, for health and for employment, has organized a task group. This group consisted physicists, lighting and metrology specialists, retinal biologist and ophthalmologist who have worked together for a year. Part of this work has comprised the evaluation of group risks of different white LEDs commercialized on the French market, according to the standards and found that some of these lights belonged to the group risk 1 or 2. This paper gives a comprehensive analysis of the potential risks of white LEDs, taking into account pre-clinical knowledge as well as epidemiologic studies and reports the French Agency's recommendations to avoid potential retinal hazards.
Address Inserm UMRS 872, Physiopathology of Ocular Diseases: Therapeutic Innovations, Centre de Recherche des Cordeliers, Paris, France. Francine.behar-cohen@crc.jussieur.fr
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-9462 ISBN (up) Medium
Area Expedition Conference
Notes PMID:21600300 Approved no
Call Number IDA @ john @ Serial 240
Permanent link to this record
 

 
Author Shang, Y.-M.; Wang, G.-S.; Sliney, D.; Yang, C.-H.; Lee, L.-L.
Title White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model Type Journal Article
Year 2014 Publication Environmental Health Perspectives Abbreviated Journal Environ Health Perspect
Volume 122 Issue 3 Pages 269-276
Keywords LED; light emitting diode; lighting; retina; Eye Diseases; blue light; Blue-rich light sources
Abstract BACKGROUND: Light-emitting diodes (LEDs) deliver higher levels of blue light to the retina than do conventional domestic light sources. Chronic exposure to high-intensity light (2,000-10,000 lux) has previously been found to result in light-induced retinal injury, but chronic exposure to relatively low-intensity (750 lux) light has not been previously assessed with LEDs in a rodent model. OBJECTIVE: We examined LED-induced retinal neuronal cell damage in the Sprague-Dawley rat using functional, histological, and biochemical measurements. METHODS: We used blue LEDs (460 nm) and full-spectrum white LEDs, coupled with matching compact fluorescent lights, for exposures. Pathological examinations included electroretinogram, hematoxylin and eosin (H&E) staining, immunohistochemistry (IHC), and transmission electron microscopy (TEM). We also measured free radical production in the retina to determine the oxidative stress level. RESULTS: H&E staining and TEM revealed apoptosis and necrosis of photoreceptors, which indicated blue-light induced photochemical injury of the retina. Free radical production in the retina was increased in LED-exposed groups. IHC staining demonstrated that oxidative stress was associated with retinal injury. Although we found serious retinal light injury in LED groups, the compact fluorescent lamp (CFL) groups showed moderate to mild injury. CONCLUSION: Our results raise questions about adverse effects on the retina from chronic exposure to LED light compared with other light sources that have less blue light. Thus, we suggest a precautionary approach with regard to the use of blue-rich “white” LEDs for general lighting. CITATION: Shang YM, Wang GS, Sliney D, Yang CH, Lee LL. 2014. White light-emitting diodes (LEDs) at domestic lighting levels and retinal injury in a rat model. Environ Health Perspect 122:269-276; http://dx.doi.org/10.1289/ehp.1307294.
Address Institute of Environmental Health, National Taiwan University, Taipei, Taiwan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-6765 ISBN (up) Medium
Area Expedition Conference
Notes PMID:24362357; PMCID:PMC3948037 Approved no
Call Number IDA @ john @ Serial 324
Permanent link to this record
 

 
Author Alaimo, A.; Linares, G.G.; Bujjamer, J.M.; Gorojod, R.M.; Alcon, S.P.; Martinez, J.H.; Baldessari, A.; Grecco, H.E.; Kotler, M.L.
Title Toxicity of blue led light and A2E is associated to mitochondrial dynamics impairment in ARPE-19 cells: implications for age-related macular degeneration Type Journal Article
Year 2019 Publication Archives of Toxicology Abbreviated Journal Arch Toxicol
Volume 93 Issue 5 Pages 1401-1415
Keywords Vision; age-related macular degeneration; Eye; Eye Diseases; blue light
Abstract Age-related macular degeneration (AMD) is a multifactorial retinal disease characterized by a progressive loss of central vision. Retinal pigment epithelium (RPE) degeneration is a critical event in AMD. It has been associated to A2E accumulation, which sensitizes RPE to blue light photodamage. Mitochondrial quality control mechanisms have evolved to ensure mitochondrial integrity and preserve cellular homeostasis. Particularly, mitochondrial dynamics involve the regulation of mitochondrial fission and fusion to preserve a healthy mitochondrial network. The present study aims to clarify the cellular and molecular mechanisms underlying photodamage-induced RPE cell death with particular focus on the involvement of defective mitochondrial dynamics. Light-emitting diodes irradiation (445 +/- 18 nm; 4.43 mW/cm(2)) significantly reduced the viability of both unloaded and A2E-loaded human ARPE-19 cells and increased reactive oxygen species production. A2E along with blue light, triggered apoptosis measured by MC540/PI-flow cytometry and activated caspase-3. Blue light induced mitochondrial fusion/fission imbalance towards mitochondrial fragmentation in both non-loaded and A2E-loaded cells which correlated with the deregulation of mitochondria-shaping proteins level (OPA1, DRP1 and OMA1). To our knowledge, this is the first work reporting that photodamage causes mitochondrial dynamics deregulation in RPE cells. This process could possibly contribute to AMD pathology. Our findings suggest that the regulation of mitochondrial dynamics may be a valuable strategy for treating retinal degeneration diseases, such as AMD.
Address Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Instituto de Quimica Biologica Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Pabellon 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina. kotler@qb.fcen.uba.ar
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0340-5761 ISBN (up) Medium
Area Expedition Conference
Notes PMID:30778631 Approved no
Call Number GFZ @ kyba @ Serial 2229
Permanent link to this record