|   | 
Details
   web
Records
Author Kayumov, L.; Casper, R.F.; Hawa, R.J.; Perelman, B.; Chung, S.A.; Sokalsky, S.; Shapiro, C.M.
Title Blocking low-wavelength light prevents nocturnal melatonin suppression with no adverse effect on performance during simulated shift work Type Journal Article
Year 2005 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab
Volume 90 Issue 5 Pages 2755-2761
Keywords Lighting; Adult; *Circadian Rhythm; Female; Humans; *Light; Male; Melatonin/*secretion; *Work Schedule Tolerance
Abstract Decreases in melatonin production in human and animals are known to be caused by environmental lighting, especially short-wavelength lighting (between 470 and 525 nm). We investigated the novel hypothesis that the use of goggles with selective exclusion of all wavelengths less than 530 nm could prevent the suppression of melatonin in bright-light conditions during a simulated shift-work experiment. Salivary melatonin levels were measured under dim (<5 lux), bright (800 lux), and filtered (800 lux) light at hourly intervals between 2000 and 0800 h in 11 healthy young males and eight females (mean age, 24.7 +/- 4.6 yr). The measurements were performed during three nonconsecutive nights over a 2-wk period. Subjective sleepiness was measured by self-report scales, whereas objective performance was assessed with the Continuous Performance Test. All subjects demonstrated preserved melatonin levels in filtered light similar to their dim-light secretion profile. Unfiltered bright light drastically suppressed melatonin production. Normalization of endogenous melatonin production while wearing goggles did not impair measures of performance, subjective sleepiness, or alertness.
Address Sleep Research Laboratory, Department of Psychiatry, University Health Network, ECW 3D-035, 399 Bathurst Street, Toronto, Ontario, Canada M5T 2S8. lkayumov@uhnres.utoronto.ca
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-972X ISBN Medium
Area Expedition Conference
Notes PMID:15713707 Approved no
Call Number LoNNe @ kagoburian @ Serial 640
Permanent link to this record
 

 
Author Longcore, T.
Title Sensory ecology: night lights alter reproductive behavior of blue tits Type Journal Article
Year 2010 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 20 Issue 20 Pages R893-5
Keywords Animals; Austria; *Cities; Female; *Light; Male; Oviposition/*physiology; Passeriformes/*physiology; *Photoperiod; Sexual Behavior, Animal/*physiology; Vocalization, Animal/*physiology
Abstract Research on songbirds indicates that streetlights influence timing of dawn chorus, egg-laying and male success in siring extra-pair young, providing new evidence that artificial lighting is an ecologically disruptive force.
Address The Urban Wildlands Group, Los Angeles, CA 90024-0020, USA. longcore@urbanwildlands.org
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:20971434 Approved no
Call Number LoNNe @ kagoburian @ Serial 699
Permanent link to this record
 

 
Author Bauer, S.E.; Wagner, S.E.; Burch, J.; Bayakly, R.; Vena, J.E.
Title A case-referent study: light at night and breast cancer risk in Georgia Type Journal Article
Year 2013 Publication International Journal of Health Geographics Abbreviated Journal Int J Health Geogr
Volume 12 Issue Pages 23
Keywords Human Health; Aged; Aged, 80 and over; Breast Neoplasms/*diagnosis/*epidemiology; Case-Control Studies; Circadian Rhythm/*physiology; Female; Georgia/epidemiology; Humans; Lighting/*adverse effects; Lung Neoplasms/diagnosis/epidemiology; Middle Aged; Registries; Risk Factors
Abstract BACKGROUND: Literature has identified detrimental health effects from the indiscriminate use of artificial nighttime light. We examined the co-distribution of light at night (LAN) and breast cancer (BC) incidence in Georgia, with the goal to contribute to the accumulating evidence that exposure to LAN increases risk of BC. METHODS: Using Georgia Comprehensive Cancer Registry data (2000-2007), we conducted a case-referent study among 34,053 BC cases and 14,458 lung cancer referents. Individuals with lung cancer were used as referents to control for other cancer risk factors that may be associated with elevated LAN, such as air pollution, and since this cancer type was not previously associated with LAN or circadian rhythm disruption. DMSP-OLS Nighttime Light Time Series satellite images (1992-2007) were used to estimate LAN levels; low (0-20 watts per sterradian cm(2)), medium (21-41 watts per sterradian cm(2)), high (>41 watts per sterradian cm(2)). LAN levels were extracted for each year of exposure prior to case/referent diagnosis in ArcGIS. RESULTS: Odds ratios (OR) and 95% confidence intervals (CI) were estimated using logistic regression models controlling for individual-level year of diagnosis, race, age at diagnosis, tumor grade, stage; and population-level determinants including metropolitan statistical area (MSA) status, births per 1,000 women aged 15-50, percentage of female smokers, MSA population mobility, and percentage of population over 16 in the labor force. We found that overall BC incidence was associated with high LAN exposure (OR = 1.12, 95% CI [1.04, 1.20]). When stratified by race, LAN exposure was associated with increased BC risk among whites (OR = 1.13, 95% CI [1.05, 1.22]), but not among blacks (OR = 1.02, 95% CI [0.82, 1.28]). CONCLUSIONS: Our results suggest positive associations between LAN and BC incidence, especially among whites. The consistency of our findings with previous studies suggests that there could be fundamental biological links between exposure to artificial LAN and increased BC incidence, although additional research using exposure metrics at the individual level is required to confirm or refute these findings.
Address Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, USA. secbauer@ufl.edu
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1476-072X ISBN Medium
Area Expedition Conference
Notes PMID:23594790; PMCID:PMC3651306 Approved no
Call Number LoNNe @ kagoburian @ Serial 718
Permanent link to this record
 

 
Author Blask, D.E.; Brainard, G.C.; Dauchy, R.T.; Hanifin, J.P.; Davidson, L.K.; Krause, J.A.; Sauer, L.A.; Rivera-Bermudez, M.A.; Dubocovich, M.L.; Jasser, S.A.; Lynch, D.T.; Rollag, M.D.; Zalatan, F.
Title Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats Type Journal Article
Year 2005 Publication Cancer Research Abbreviated Journal Cancer Res
Volume 65 Issue 23 Pages 11174-11184
Keywords Human Health; Animals; Breast Neoplasms/*blood/genetics/pathology; Cell Growth Processes/physiology; Circadian Rhythm/*physiology; Female; Humans; Light; Liver Neoplasms, Experimental/metabolism; Male; Melatonin/blood/*deficiency; Premenopause/blood; RNA, Messenger/biosynthesis/genetics; Rats; Rats, Nude; Receptors, Melatonin/biosynthesis/genetics; Transplantation, Heterologous
Abstract The increased breast cancer risk in female night shift workers has been postulated to result from the suppression of pineal melatonin production by exposure to light at night. Exposure of rats bearing rat hepatomas or human breast cancer xenografts to increasing intensities of white fluorescent light during each 12-hour dark phase (0-345 microW/cm2) resulted in a dose-dependent suppression of nocturnal melatonin blood levels and a stimulation of tumor growth and linoleic acid uptake/metabolism to the mitogenic molecule 13-hydroxyoctadecadienoic acid. Venous blood samples were collected from healthy, premenopausal female volunteers during either the daytime, nighttime, or nighttime following 90 minutes of ocular bright, white fluorescent light exposure at 580 microW/cm2 (i.e., 2,800 lx). Compared with tumors perfused with daytime-collected melatonin-deficient blood, human breast cancer xenografts and rat hepatomas perfused in situ, with nocturnal, physiologically melatonin-rich blood collected during the night, exhibited markedly suppressed proliferative activity and linoleic acid uptake/metabolism. Tumors perfused with melatonin-deficient blood collected following ocular exposure to light at night exhibited the daytime pattern of high tumor proliferative activity. These results are the first to show that the tumor growth response to exposure to light during darkness is intensity dependent and that the human nocturnal, circadian melatonin signal not only inhibits human breast cancer growth but that this effect is extinguished by short-term ocular exposure to bright, white light at night. These mechanistic studies are the first to provide a rational biological explanation for the increased breast cancer risk in female night shift workers.
Address Laboratory of Chrono-Neuroendocrine Oncology, Bassett Research Institute, The Mary Imogene Bassett Hospital, Cooperstown, New York 13326, USA. david.blask@bassett.org
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-5472 ISBN Medium
Area Expedition Conference
Notes PMID:16322268 Approved no
Call Number LoNNe @ kagoburian @ Serial 721
Permanent link to this record
 

 
Author Brainard, G.C.; Sliney, D.; Hanifin, J.P.; Glickman, G.; Byrne, B.; Greeson, J.M.; Jasser, S.; Gerner, E.; Rollag, M.D.
Title Sensitivity of the human circadian system to short-wavelength (420-nm) light Type Journal Article
Year 2008 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 23 Issue 5 Pages 379-386
Keywords Human Health; Adult; Circadian Rhythm/*radiation effects; Female; Humans; *Light; Male; Melatonin/metabolism; Models, Biological; Neurosecretory Systems; Photons; Pineal Gland/metabolism; Retinal Ganglion Cells/*metabolism; Vision, Ocular
Abstract The circadian and neurobehavioral effects of light are primarily mediated by a retinal ganglion cell photoreceptor in the mammalian eye containing the photopigment melanopsin. Nine action spectrum studies using rodents, monkeys, and humans for these responses indicate peak sensitivities in the blue region of the visible spectrum ranging from 459 to 484 nm, with some disagreement in short-wavelength sensitivity of the spectrum. The aim of this work was to quantify the sensitivity of human volunteers to monochromatic 420-nm light for plasma melatonin suppression. Adult female (n=14) and male (n=12) subjects participated in 2 studies, each employing a within-subjects design. In a fluence-response study, subjects (n=8) were tested with 8 light irradiances at 420 nm ranging over a 4-log unit photon density range of 10(10) to 10(14) photons/cm(2)/sec and 1 dark exposure control night. In the other study, subjects (n=18) completed an experiment comparing melatonin suppression with equal photon doses (1.21 x 10(13) photons/cm(2)/sec) of 420 nm and 460 nm monochromatic light and a dark exposure control night. The first study demonstrated a clear fluence-response relationship between 420-nm light and melatonin suppression (p<0.001) with a half-saturation constant of 2.74 x 10(11) photons/cm(2)/sec. The second study showed that 460-nm light is significantly stronger than 420-nm light for suppressing melatonin (p<0.04). Together, the results clarify the visible short-wavelength sensitivity of the human melatonin suppression action spectrum. This basic physiological finding may be useful for optimizing lighting for therapeutic and other applications.
Address Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA. george.brainard@jefferson.edu
Corporate Author Thesis (up)
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:18838601 Approved no
Call Number LoNNe @ kagoburian @ Serial 724
Permanent link to this record