toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Fiorentin, P.; Boscaro, F. url  doi
openurl 
  Title A method for measuring the light output of video advertising reproduced by LED billboards Type Journal Article
  Year 2019 Publication Measurement Abbreviated Journal Measurement  
  Volume 138 Issue Pages 25-33  
  Keywords Lighting; Energy; Instrumentation; Planning; Light-emitting diode displays; Photometry; Video recording; Image analysis; CCD image sensors; Luminance; Glare  
  Abstract Improving knowledge of the light output of digital billboards is important to better assess their effect on driver distraction when they are installed along roads. In this work the emission of an LED based billboard is measured when playing advertising video-clips. In particular the average and the maximum values of the luminance are evaluated. The same video-clips are also analyzed when shown on an LCD monitor, aiming at separating the variability of the videos and of the playing device. The results allow to evaluate an utilization factor of the billboard: the videos have an average luminance around 11% and a peak luminance of 35% of the maximum luminance obtainable from the billboard. The power consumption of the billboard is measured, aside the photometric analysis. The luminance of the device are found linearly dependent on both the power and the effective current absorbed by the device from the grid, with a discrepancy within 6%. It could be a useful information for billboard manufacturers to qualify their product when they do not own photometric instruments.  
  Address Department of Industrial Engineering, University of Padova, Padova, Italy; pietro.fiorentin(at)unipd.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0263-2241 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2214  
Permanent link to this record
 

 
Author (up) Lin, Y.; Liu, Y.; Sun, Y.; Zhu, X.; Lai, J.; Heynderickx, I. url  doi
openurl 
  Title Model predicting discomfort glare caused by LED road lights Type Journal Article
  Year 2014 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 22 Issue 15 Pages 18056  
  Keywords LED; LED lighting; glare; road safety; traffic  
  Abstract To model discomfort glare from LED road lighting, the effect of four key variables on perceived glare was explored. These variables were: the average glare source luminance (Lg), the background luminance (Lb), the solid angle of the glare source from the perspective of the viewer; and the angle between the glare source and the line of sight. Based on these four variables 72 different light conditions were simulated in a scaled experimental set-up. Participants were requested to judge the perceived discomfort glare of these light conditions using the deBoer rating scale. All four variables and some of their interactions had indeed a significant effect on the deBoer rating. Based on these findings, we developed a model, and tested its general applicability in various verification experiments, including laboratory conditions as well as real road conditions. This verification proved the validity of the model with a correlation between measured and predicted values as high as 0.87 and a residual deviation of about 1 unit on the deBoer rating scale. These results filled the gap in estimating discomfort glare of LED road lighting and clarified similarities of and differences in discomfort glare between LED and traditional light sources.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 351  
Permanent link to this record
 

 
Author (up) Scott, R. url  openurl
  Title THE RELATIONSHIP BETWEEN ROAD LIGHTING QUALITY AND ACCIDENT FREQUENCY – TRRL LABORATORY REPORT 929. Type Journal Article
  Year 1980 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Lighting; quality; accident rate; accident; frequency; luminance; glare; uniformity; urban area; daylight; darkness; surfacing; pedestrian  
  Abstract many studies have related changes in accident frequency to the presence of street lighting, and a few have examined its variation over a range of lighting quality, as measured by illuminance. this investigation attempts to find which of several measures of lighting (describing quantity – as represented by luminance or illuminance – uniformity and glare) most clearly explain variations in accident frequency. about 100 lit sites, almost all in built-up areas, were measured for lighting quality in dry-road conditions. the lighting variables measured were related to the dark:day ratios of accident frequency for the same sites. the strongest relationship found was that for average road surface luminance: in the range 0.5-2.0 candelas/m2, it is estimated that an increase of 1 cd/m2 is associated with a 35 per cent lower accident ratio. other measures of luminance and illuminance were also found to be related to accident ratio (and to each other), but not as clearly as was average road luminance, which is therefore the preferred explanatory variable. analysis of pedestrian and non-pedestrian accidents separately did not reveal a relationship between the former and lighting quality. in contrast, non-pedestrian accidents showed similar relationships to those for all accidents, with the addition of a possible relationship with overall uniformity of luminance.(a)  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 647  
Permanent link to this record
 

 
Author (up) Ticleanu, C.; Littlefair, P. url  openurl
  Title A summary of LED lighting impacts on health Type Journal Article
  Year 2015 Publication International Journal of Sustainable Lighting Abbreviated Journal Intl. J. of Sustainable Lighting  
  Volume 1 Issue 1 Pages 5-11  
  Keywords Human health; light and health; LED glare; LED flicker; melatonin supression; LED skin exposure  
  Abstract Lighting can affect the health of people in buildings. This goes beyond the safety aspects of providing enough illumination to see by; lighting affects mood and human circadian rhythms, while poor lighting can cause glare, headaches, eyestrain, aches and pains associated with poor body posture or, in extreme cases, skin conditions and various types of sight loss. These aspects ought to be considered by designers and building owners and occupiers in order to improve the lit environment and use adequate lighting and lighting controls that meet the recommendations of codes and standards. Various types of lighting can have different impacts depending on their spectral, optical and electrical characteristics. This paper discusses potential impacts of LED lighting on human health, and is based on a recent BRE review of research investigating the most typical effects of lighting on human health.  
  Address Building Research Establishment (BRE), Bucknalls Lane, Watford WD25 9XX UK; Cosmin.Ticleanu(at)bre.co.uk  
  Corporate Author Thesis  
  Publisher International Journal of Sustainable Lighting Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1454-5837 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1389  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: