toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ouyang, J.Q.; Davies, S.; Dominoni, D. url  doi
openurl 
  Title Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function Type Journal Article
  Year 2018 Publication The Journal of Experimental Biology Abbreviated Journal J Exp Biol  
  Volume 221 Issue Pt 6 Pages  
  Keywords Human Health; Alan; Glucocorticoid; Hormones; Light pollution; Melatonin; Metabolism; Sleep; Stress; Thyroid; Urban ecology  
  Abstract Alternation between day and night is a predictable environmental fluctuation that organisms use to time their activities. Since the invention of artificial lighting, this predictability has been disrupted and continues to change in a unidirectional fashion with increasing urbanization. As hormones mediate individual responses to changing environments, endocrine systems might be one of the first systems affected, as well as being the first line of defense to ameliorate any negative health impacts. In this Review, we first highlight how light can influence endocrine function in vertebrates. We then focus on four endocrine axes that might be affected by artificial light at night (ALAN): pineal, reproductive, adrenal and thyroid. Throughout, we highlight key findings, rather than performing an exhaustive review, in order to emphasize knowledge gaps that are hindering progress on proposing impactful and concrete plans to ameliorate the negative effects of ALAN. We discuss these findings with respect to impacts on human and animal health, with a focus on the consequences of anthropogenic modification of the night-time environment for non-human organisms. Lastly, we stress the need for the integration of field and lab experiments as well as the need for long-term integrative eco-physiological studies in the rapidly expanding field of light pollution.  
  Address Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0949 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29545373 Approved no  
  Call Number IDA @ john @ Serial 1817  
Permanent link to this record
 

 
Author Romano, M.C.; Rodas, A.Z.; Valdez, R.A.; Hernandez, S.E.; Galindo, F.; Canales, D.; Brousset, D.M. url  doi
openurl 
  Title Stress in wildlife species: noninvasive monitoring of glucocorticoids Type Journal Article
  Year 2010 Publication Neuroimmunomodulation Abbreviated Journal Neuroimmunomodulation  
  Volume 17 Issue 3 Pages 209-212  
  Keywords Human Health; Animals; Animals, Wild/immunology/*metabolism; Animals, Zoo/immunology/*metabolism; Cetacea/immunology/metabolism; Depressive Disorder/metabolism/physiopathology; Ecosystem; Environment; Feces/chemistry; Felidae/immunology/metabolism; Glucocorticoids/*analysis/*metabolism; Housing, Animal; Primates/immunology/metabolism; Radioimmunoassay/methods; Social Behavior; Stress, Psychological/*diagnosis/*metabolism/physiopathology; Testosterone/analysis/metabolism  
  Abstract Depression and stress are related pathologies extensively studied in humans. However, this relationship is not well known in animals kept in zoos and even less known in wild animals. In zoo animals, acute and chronic stress caused by difficulties in coping with stressors such as public presence and noise, among others, can induce the appearance of repetitive pathological behaviors such as stereotypies, many times associated with organic pathologies that deeply affect their health and welfare. In the wild, factors such as deforestation, habitat fragmentation, lack of food and water, and human disturbances are potential causes of acute and chronic stress for the resident fauna. Glucocorticoids (GC) have been extensively used as stress indicators in many species including humans. Since chase and handling of wild animals immediately raise their GC serum levels, noninvasive methods have been developed to assess stress without interference caused by sample collection. The hormones and their metabolites can be measured in various body fluids and excreta and detect basal feedback free hormone concentrations as well as the response to ACTH and handling. In order to study the influence of disturbing factors we have measured GC as stress indicators by noninvasive techniques in dolphins and felids (ocelots, jaguarundis and margays) and cortisol and testosterone in spider monkeys.  
  Address Departamento de Fisiologia, Biofisica y Neurociencias, CINVESTAV-IPN, Mexico, Mexico. mromano@fisio.cinvestav.mx  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1021-7401 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20134205 Approved no  
  Call Number LoNNe @ schroer @ Serial 585  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: