|   | 
Details
   web
Records
Author (up) Albala, L.; Bober, T.; Hale, G.; Warfield, B.; Collins, M.L.; Merritt, Z.; Steimetz, E.; Nadler, S.; Lev, Y.; Hanifin, J.
Title Effect on nurse and patient experience: overnight use of blue-depleted illumination Type Journal Article
Year 2019 Publication BMJ Open Quality Abbreviated Journal BMJ Open Qual
Volume 8 Issue 3 Pages e000692
Keywords Human Health
Abstract Background Typical hospital lighting is rich in blue-wavelength emission, which can create unwanted circadian disruption in patients when exposed at night. Despite a growing body of evidence regarding the effects of poor sleep on health outcomes, physiologically neutral technologies have not been widely implemented in the US healthcare system.

Objective The authors sought to determine if rechargeable, proximity-sensing, blue-depleted lighting pods that provide wireless task lighting can make overnight hospital care more efficient for providers and less disruptive to patients.

Design Non-randomised, controlled interventional trial in an intermediate-acuity unit at a large urban medical centre.

Methods Night-time healthcare providers abstained from turning on overhead patient room lighting in favour of a physiologically neutral lighting device. 33 nurses caring for patients on that unit were surveyed after each shift. 21 patients were evaluated after two nights with standard-of-care light and after two nights with lighting intervention.

Results Providers reported a satisfaction score of 8 out of 10, with 82% responding that the lighting pods provided adequate lighting for overnight care tasks. Among patients, a median 2-point improvement on the Hospital Anxiety and Depression Scale was reported.

Conclusion and relevance The authors noted improved caregiver satisfaction and decreased patient anxiety by using a blue-depleted automated task-lighting alternative to overhead room lights. Larger studies are needed to determine the impact of these lighting devices on sleep measures and patient health outcomes like delirium. With the shift to patient-centred financial incentives and emphasis on patient experience, this study points to the feasibility of a physiologically targeted solution for overnight task lighting in healthcare environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2399-6641 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2681
Permanent link to this record
 

 
Author (up) Albreiki, Mohammed S.
Title The effects of light at night and/or melatonin on hormones, metabo- lites, appetite control, vascular function, and behavioural responses. Type Journal Article
Year 2017 Publication University of Surrey Abbreviated Journal
Volume Issue Pages
Keywords Human Health
Abstract Light at night (LAN) is a major factor in disruption of SCN function, including melatonin suppression. Melatonin has been linked to a variety of biological processes such as lipid and glucose metabolism, vascular parameters, appetite, and behaviour. However, few human studies have investigated the effect of LAN and suppressed melatonin prior to and after an evening meal. The current thesis aims to investigate the impact of light at night and/or mela- tonin on hormones, metabolites, appetite, vascular function, and behaviour prior to and after an evening test meal in healthy participants. The first study investigated the effect of dim or bright light conditions on hor- mones, metabolites, appetite, vascular function and behavioural responses. Glucose tolerance and insulin sensitivity were reduced, lipid profiles altered and salivary melatonin suppressed under bright light compared to dim light conditions. Subjec- tive mood was improved and appetite scores increased in bright light. No differences were seen in vascular parameters. Although clear differences were apparent it could not be determined whether the effects were due to the light at night, the absence of melatonin or a combination of the two. The second study involved three conditions with the administration of exogenous melatonin 90 mins before the evening test meal under bright and dim light conditions compared to bright light alone with the consequent melatonin suppression. Glucose tolerance and insulin sensitivity were reduced and lipid profile altered in bright light when melatonin was suppressed compared to the two conditions with exogenous melatonin. Mood was improved and appetite increased with lower leptin levels and elevated wrist temperature with bright light and suppressed melatonin. Statistical analysis showed that the major effects were due to melatonin. These studies demonstrate a possible role for melatonin in glucose tolerance, insulin sensitivity and lipid metabolism when eating late at night which may have implications for shift-workers.
Address
Corporate Author Thesis Ph.D. thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @; GFZ @ kyba @ Serial 1747
Permanent link to this record
 

 
Author (up) Alzahrani, H.S.; Khuu, S.K.; Roy, M.
Title Modelling the effect of commercially available blue-blocking lenses on visual and non-visual functions Type Journal Article
Year 2019 Publication Clinical & Experimental Optometry Abbreviated Journal Clin Exp Optom
Volume in press Issue Pages cxo.12959
Keywords Human Health; blue-blocking lenses; non-visual functions; transmittance; visual functions
Abstract BACKGROUND: Blue-blocking lenses (BBLs) are marketed as providing retinal protection from acute and cumulative exposure to blue light over time. The selective reduction in visible wavelengths transmitted through BBLs is known to influence the photosensitivity of retinal photoreceptors, which affects both visual and non-visual functions. This study measured the spectral transmittance of BBLs and evaluated their effect on blue perception, scotopic vision, circadian rhythm, and protection from photochemical retinal damage. METHODS: Seven different types of BBLs from six manufacturers and untinted control lenses with three different powers (+2.00 D, -2.00 D and Plano) were evaluated. The whiteness index of BBLs used in this study was calculated using Commission International de l'Eclairage (CIE) Standard Illuminates D65, and CIE 1964 Standard with a 2 degrees Observer. The protective qualities of BBLs and their effect on blue perception, scotopic vision, and circadian rhythm were evaluated based on their spectral transmittance, which was measured with a Cary 5,000 UV-Vis-NIR spectrophotometer. RESULTS: BBLs were found to reduce blue light (400-500 nm) by 6-43 per cent, providing significant protection from photochemical retinal damage compared to control lenses (p </= 0.05). All BBLs were capable of reducing the perception of blue colours, scotopic sensitivities and circadian sensitivities by 5-36 per cent, 5-24 per cent, and 4-27 per cent, respectively depending on the brand and power of the lens. CONCLUSION: BBLs can provide some protection to the human eye from photochemical retinal damage by reducing a portion of blue light that may affect visual and non-visual performances, such as those critical to scotopic vision, blue perception, and circadian rhythm.
Address School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0816-4622 ISBN Medium
Area Expedition Conference
Notes PMID:31441122 Approved no
Call Number GFZ @ kyba @ Serial 2654
Permanent link to this record
 

 
Author (up) An, K.; Zhao, H.; Miao, Y.; Xu, Q.; Li, Y.-F.; Ma, Y.-Q.; Shi, Y.-M.; Shen, J.-W.; Meng, J.-J.; Yao, Y.-G.; Zhang, Z.; Chen, J.-T.; Bao, J.; Zhang, M.; Xue, T.
Title A circadian rhythm-gated subcortical pathway for nighttime-light-induced depressive-like behaviors in mice Type Journal Article
Year 2020 Publication Nature Neuroscience Abbreviated Journal Nat Neurosci
Volume in press Issue Pages
Keywords Human Health
Abstract Besides generating vision, light modulates various physiological functions, including mood. While light therapy applied in the daytime is known to have anti-depressive properties, excessive light exposure at night has been reportedly associated with depressive symptoms. The neural mechanisms underlying this day-night difference in the effects of light are unknown. Using a light-at-night (LAN) paradigm in mice, we showed that LAN induced depressive-like behaviors without disturbing the circadian rhythm. This effect was mediated by a neural pathway from retinal melanopsin-expressing ganglion cells to the dorsal perihabenular nucleus (dpHb) to the nucleus accumbens (NAc). Importantly, the dpHb was gated by the circadian rhythm, being more excitable at night than during the day. This indicates that the ipRGC-->dpHb-->NAc pathway preferentially conducts light signals at night, thereby mediating LAN-induced depressive-like behaviors. These findings may be relevant when considering the mental health effects of the prevalent nighttime illumination in the industrial world.
Address Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China. xuetian@ustc.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1097-6256 ISBN Medium
Area Expedition Conference
Notes PMID:32483349 Approved no
Call Number GFZ @ kyba @ Serial 2978
Permanent link to this record
 

 
Author (up) Anbalagan, M.; Dauchy, R.; Xiang, S.; Robling, A.; Blask, D.; Rowan, B.; Hill, S.
Title SAT-337 Disruption Of The Circadian Melatonin Signal By Dim Light At Night Promotes Bone-lytic Breast Cancer Metastases Type Journal Article
Year 2019 Publication Journal of the Endocrine Society Abbreviated Journal
Volume 3 Issue Supplement_1 Pages
Keywords Human Health; Cancer; Breast cancer; melatonin; shift work; mouse models
Abstract Breast cancer metastasis to bone is a major source of morbidity and mortality in women with advanced metastatic breast cancer. Morbidity from metastasis to bone is compounded by the fact that they cannot be surgically removed and can only be treated with chemotherapy and/or radiation therapy. Thus, there is critical need to develop new treatment strategies that kill bone metastatic tumors and reduce osteolytic lesions to improve patient quality of life and extend patient survival. Circadian rhythms are daily cycles of ~24 h that control many if not most physiologic processes and their disruption by exposure to light at night (LAN) or jet lag has been shown to be strongly associated with the development of cancer, particularly breast cancer. We have found that disruption of the anti-cancer circadian hormone melatonin (MLT) by light at night can significantly enhance the metastatic potential in breast cancer cells. Our work supports the report of the International Agency for Research on Cancer that shift work is a “probable human carcinogen” and highlights the association between exposure to light at night and invasive breast cancer. We recently reported that human breast tumor xenografts grown in athymic nude female rats housed in a photoperiod of 12h light at day: 12h dim light at night (dLAN, 0.2 lux – blocks the nighttime circadian MLT signal), display resistance to doxorubicin (Dox). More importantly, tumor growth and drug resistance could be blocked by the administration of Dox in circadian alignment with nocturnal MLT during dLAN. Our recent preliminary studies show that poorly invasive ERα positive MCF-7 breast cancer cells, when injected into the tibia (to mimic bone metastatic disease) of Foxn1nu athymic nude mice (which produce a strong circadian nighttime melatonin signal) housed in a dLAN photoperiod (suppressed nocturnal MLT production) developed full blown breast cancer tumors in bone (P<0.05) that are highly osteolytic (P<0.05). Moreover, patients with metastatic breast cancer are routinely treated with doxorubicin, which itself can promote bone damage. Our studies demonstrate that MLT slows the growth of metastatic breast cancer in bone but that the chrono-therapeutic use of doxorubicin in circadian alignment with melatonin in Foxn1nu mice with tibial breast tumors, reduced tumor growth in bone, reduced bone erosion, and promoted the formation of new bone. Successful use of this chronotherapeutic use of Dox and MLT in clinical trials increasing efficacy in preventing or suppressing breast cancer metastasis to bone while decreasing toxic side effects of doxorubicin would provide a revolutionary advancement in the treatment of bone metastatic breast cancer and decrease the morbidity and mortality associated with breast cancer metastasis to bone.
Address Tulane University School of Medicine, New Orleans, LA, United States
Corporate Author Thesis
Publisher Oxford Academic Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2472-1972 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2433
Permanent link to this record