toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wu, B.; Wang, Y.; Wu, X.; Liu, D.; Xu, D.; Wang, F. url  doi
openurl 
  Title On-orbit sleep problems of astronauts and countermeasures Type Journal Article
  Year 2018 Publication Military Medical Research Abbreviated Journal Mil Med Res  
  Volume 5 Issue 1 Pages 17  
  Keywords Human Health  
  Abstract Sufficient sleep duration and good sleep quality are crucial to ensure normal physical and mental health, cognition and work performance for the common people, as well as astronauts. On-orbit sleep problem is very common among astronauts and has potential detrimental influences on the health of crewmembers and the safety of flight missions. Sleep in space is becoming a new medical research frontier. In this review we summarized on-orbit sleep problems of astronauts and six kinds of causes, and we presented the effects of lack of sleep on performance as well as mental and physical health, then we proposed seven kinds of countermeasures for sleep disturbance in spaceflight, including pharmacologic interventions, light treatment, crew selection and training, Traditional Chinese Medicine and so on. Furthermore, we discussed and oriented the prospect of researches on sleep in space.  
  Address (down) State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, No. 26 Beiqing Road, Haidian District, Beijing, 100094, People's Republic of China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2054-9369 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29843821; PMCID:PMC5975626 Approved no  
  Call Number GFZ @ kyba @ Serial 1930  
Permanent link to this record
 

 
Author Kaplan, K.A.; Mashash, M.; Williams, R.; Batchelder, H.; Starr-Glass, L.; Zeitzer, J.M. url  doi
openurl 
  Title Effect of Light Flashes vs Sham Therapy During Sleep With Adjunct Cognitive Behavioral Therapy on Sleep Quality Among Adolescents: A Randomized Clinical Trial Type Journal Article
  Year 2019 Publication JAMA Network Open Abbreviated Journal JAMA Netw Open  
  Volume 2 Issue 9 Pages e1911944  
  Keywords Human Health  
  Abstract Importance: Owing to biological, behavioral, and societal factors, sleep duration in teenagers is often severely truncated, leading to pervasive sleep deprivation. Objective: To determine whether a novel intervention, using both light exposure during sleep and cognitive behavioral therapy (CBT), would increase total sleep time in teenagers by enabling them to go to sleep earlier than usual. Design, Setting, and Participants: This double-blind, placebo-controlled, randomized clinical trial, conducted between November 1, 2013, and May 31, 2016, among 102 adolescents enrolled full-time in grades 9 to 12, who expressed difficulty going to bed earlier and waking up early enough, was composed of 2 phases. In phase 1, participants were assigned to receive either 3 weeks of light or sham therapy and were asked to try to go to sleep earlier. In phase 2, participants received 4 brief CBT sessions in addition to a modified light or sham therapy. All analyses were performed on an intent-to-treat basis. Interventions: Light therapy consisted of receiving a 3-millisecond light flash every 20 seconds during the final 3 hours of sleep (phase 1) or final 2 hours of sleep (phase 2). Sham therapy used an identical device, but delivered 1 minute of light pulses (appearing in 20-second intervals, for a total of 3 pulses) per hour during the final 3 hours of sleep (phase 1) or 2 hours of sleep (phase 2). Light therapy occurred every night during the 4-week intervention. Cognitive behavioral therapy consisted of four 50-minute in-person sessions once per week. Main Outcomes and Measures: Primary outcome measures included diary-based sleep times, momentary ratings of evening sleepiness, and subjective measures of sleepiness and sleep quality. Results: Among the 102 participants (54 female [52.9%]; mean [SD] age, 15.6 [1.1] years), 72 were enrolled in phase 1 and 30 were enrolled in phase 2. Mixed-effects models revealed that light therapy alone was inadequate in changing the timing of sleep. However, compared with sham therapy plus CBT alone, light therapy plus CBT significantly moved sleep onset a mean (SD) of 50.1 (27.5) minutes earlier and increased nightly total sleep time by a mean (SD) of 43.3 (35.0) minutes. Light therapy plus CBT also resulted in a 7-fold greater increase in bedtime compliance than that observed among participants receiving sham plus CBT (mean [SD], 2.21 [3.91] vs 0.29 [0.76]), as well as a mean 0.55-point increase in subjective evening sleepiness as compared with a mean 0.48-point decrease in participants receiving sham plus CBT as measured on a 7-point sleepiness scale. Conclusions and Relevance: This study found that light exposure during sleep, in combination with a brief, motivation-focused CBT intervention, was able to consistently move bedtimes earlier and increase total sleep time in teenagers. This type of passive light intervention in teenagers may lead to novel therapeutic applications. Trial Registration: ClinicalTrials.gov identifier: NCT01406691.  
  Address (down) Stanford Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2574-3805 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31553469 Approved no  
  Call Number GFZ @ kyba @ Serial 2683  
Permanent link to this record
 

 
Author Pauley, S.M. url  doi
openurl 
  Title Lighting for the human circadian clock: recent research indicates that lighting has become a public health issue Type Journal Article
  Year 2004 Publication Medical Hypotheses Abbreviated Journal Med Hypotheses  
  Volume 63 Issue 4 Pages 588-596  
  Keywords Human Health; Chronobiology Disorders/*complications/*physiopathology; Circadian Rhythm/*radiation effects; Clinical Trials as Topic; Environmental Exposure/adverse effects; Evidence-Based Medicine; Humans; Light; Lighting/*adverse effects/methods; Melatonin/metabolism; *Models, Biological; Neoplasms/*etiology/*physiopathology; Occupational Diseases/etiology/physiopathology; Public Health/methods/trends; Risk Assessment/methods; Risk Factors  
  Abstract The hypothesis that the suppression of melatonin (MLT) by exposure to light at night (LAN) may be one reason for the higher rates of breast and colorectal cancers in the developed world deserves more attention. The literature supports raising this subject for awareness as a growing public health issue. Evidence now exists that indirectly links exposures to LAN to human breast and colorectal cancers in shift workers. The hypothesis begs an even larger question: has medical science overlooked the suppression of MLT by LAN as a contributor to the overall incidence of cancer? The indirect linkage of breast cancer to LAN is further supported by laboratory rat experiments by David E. Blask and colleagues. Experiments involved the implanting of human MCF-7 breast cancer cell xenografts into the groins of rats and measurements were made of cancer cell growth rates, the uptake of linoleic acid (LA), and MLT levels. One group of implanted rats were placed in light-dark (12L:12D) and a second group in light-light (12L:12L) environments. Constant light suppressed MLT, increased cancer cell growth rates, and increased LA uptake into cancer cells. The opposite was seen in the light-dark group. The proposed mechanism is the suppression of nocturnal MLT by exposure to LAN and subsequent lack of protection by MLT on cancer cell receptor sites which allows the uptake of LA which in turn enhances the growth of cancer cells. MLT is a protective, oncostatic hormone and strong antioxidant having evolved in all plants and animals over the millennia. In vertebrates, MLT is normally produced by the pineal gland during the early morning hours of darkness, even in nocturnal animals, and is suppressed by exposure to LAN. Daily entrainment of the human circadian clock is important for good human health. These studies suggest that the proper use and color of indoor and outdoor lighting is important to the health of both humans and ecosystems. Lighting fixtures should be designed to minimize interference with normal circadian rhythms in plants and animals. New discoveries on blue-light-sensitive retinal ganglion cell light receptors that control the circadian clock and how those receptors relate to today's modern high intensity discharge (HID) lamps are discussed. There is a brief discussion of circadian rhythms and light pollution. With the precautionary principle in mind, practical suggestions are offered for better indoor and outdoor lighting practices designed to safeguard human health.  
  Address (down) spauley@cox-internet.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0306-9877 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15325001 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 792  
Permanent link to this record
 

 
Author Akacem, L.D.; Wright, K.P.J.; LeBourgeois, M.K. url  doi
openurl 
  Title Bedtime and evening light exposure influence circadian timing in preschool-age children: A field study Type Journal Article
  Year 2016 Publication Neurobiology of Sleep and Circadian Rhythms Abbreviated Journal Neurobiol Sleep Circadian Rhythms  
  Volume 1 Issue 2 Pages 27-31  
  Keywords Human Health  
  Abstract Light exposure and sleep timing are two factors that influence inter-individual variability in the timing of the human circadian clock. The aim of this study was to quantify the degree to which evening light exposure predicts variance in circadian timing over and above bedtime alone in preschool children. Participants were 21 children ages 4.5-5.0 years (4.7 +/- 0.2 years; 9 females). Children followed their typical sleep schedules for 4 days during which time they wore a wrist actigraph to assess sleep timing and a pendant light meter to measure minute-by-minute illuminance levels in lux. On the 5th day, children participated in an in-home dim-light melatonin onset (DLMO) assessment. Light exposure in the 2 h before bedtime was averaged and aggregated across the 4 nights preceding the DLMO assessment. Mean DLMO and bedtime were 19:22 +/- 01:04 and 20:07 +/- 00:46, respectively. Average evening light exposure was 710.1 +/- 1418.2 lux. Children with later bedtimes (lights-off time) had more delayed melatonin onset times (r=0.61, p=0.002). Evening light exposure was not independently associated with DLMO (r=0.32, p=0.08); however, a partial correlation between evening light exposure and DLMO when controlling for bedtime yielded a positive correlation (r=0.46, p=0.02). Bedtime explained 37.3% of the variance in the timing of DLMO, and evening light exposure accounted for an additional 13.3% of the variance. These findings represent an important step in understanding factors that influence circadian phase in preschool-age children and have implications for understanding a modifiable pathway that may underlie late sleep timing and the development of evening settling problems in early childhood.  
  Address (down) Sleep and Development Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2451-9944 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28042611; PMCID:PMC5193478 Approved no  
  Call Number LoNNe @ kyba @ Serial 1755  
Permanent link to this record
 

 
Author Pilorz, V.; Tam, S.K.E.; Hughes, S.; Pothecary, C.A.; Jagannath, A.; Hankins, M.W.; Bannerman, D.M.; Lightman, S.L.; Vyazovskiy, V.V.; Nolan, P.M.; Foster, R.G.; Peirson, S.N. url  doi
openurl 
  Title Melanopsin Regulates Both Sleep-Promoting and Arousal-Promoting Responses to Light Type Journal Article
  Year 2016 Publication PLoS Biology Abbreviated Journal PLoS Biol  
  Volume 14 Issue 6 Pages e1002482  
  Keywords Human health; melanopsin; sleep; circadian rhythm  
  Abstract Light plays a critical role in the regulation of numerous aspects of physiology and behaviour, including the entrainment of circadian rhythms and the regulation of sleep. These responses involve melanopsin (OPN4)-expressing photosensitive retinal ganglion cells (pRGCs) in addition to rods and cones. Nocturnal light exposure in rodents has been shown to result in rapid sleep induction, in which melanopsin plays a key role. However, studies have also shown that light exposure can result in elevated corticosterone, a response that is not compatible with sleep. To investigate these contradictory findings and to dissect the relative contribution of pRGCs and rods/cones, we assessed the effects of light of different wavelengths on behaviourally defined sleep. Here, we show that blue light (470 nm) causes behavioural arousal, elevating corticosterone and delaying sleep onset. By contrast, green light (530 nm) produces rapid sleep induction. Compared to wildtype mice, these responses are altered in melanopsin-deficient mice (Opn4-/-), resulting in enhanced sleep in response to blue light but delayed sleep induction in response to green or white light. We go on to show that blue light evokes higher Fos induction in the SCN compared to the sleep-promoting ventrolateral preoptic area (VLPO), whereas green light produced greater responses in the VLPO. Collectively, our data demonstrates that nocturnal light exposure can have either an arousal- or sleep-promoting effect, and that these responses are melanopsin-mediated via different neural pathways with different spectral sensitivities. These findings raise important questions relating to how artificial light may alter behaviour in both the work and domestic setting.  
  Address (down) Sleep and Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Oxford Molecular Pathology Institute, Dunn School of Pathology, University of Oxford, Oxford, United Kingdom; stuart.peirson(at)eye.ox.ac.uk (SNP); russell.foster(at)eye.ox.ac.uk (RGF).  
  Corporate Author Thesis  
  Publisher PLOS Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1544-9173 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27276063; PMCID:PMC4898879 Approved no  
  Call Number IDA @ john @ Serial 1490  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: