|   | 
Details
   web
Records
Author Blask, D.E.; Brainard, G.C.; Dauchy, R.T.; Hanifin, J.P.; Davidson, L.K.; Krause, J.A.; Sauer, L.A.; Rivera-Bermudez, M.A.; Dubocovich, M.L.; Jasser, S.A.; Lynch, D.T.; Rollag, M.D.; Zalatan, F.
Title Melatonin-depleted blood from premenopausal women exposed to light at night stimulates growth of human breast cancer xenografts in nude rats Type Journal Article
Year 2005 Publication Cancer Research Abbreviated Journal Cancer Res
Volume 65 Issue 23 Pages 11174-11184
Keywords Human Health; Animals; Breast Neoplasms/*blood/genetics/pathology; Cell Growth Processes/physiology; Circadian Rhythm/*physiology; Female; Humans; Light; Liver Neoplasms, Experimental/metabolism; Male; Melatonin/blood/*deficiency; Premenopause/blood; RNA, Messenger/biosynthesis/genetics; Rats; Rats, Nude; Receptors, Melatonin/biosynthesis/genetics; Transplantation, Heterologous
Abstract The increased breast cancer risk in female night shift workers has been postulated to result from the suppression of pineal melatonin production by exposure to light at night. Exposure of rats bearing rat hepatomas or human breast cancer xenografts to increasing intensities of white fluorescent light during each 12-hour dark phase (0-345 microW/cm2) resulted in a dose-dependent suppression of nocturnal melatonin blood levels and a stimulation of tumor growth and linoleic acid uptake/metabolism to the mitogenic molecule 13-hydroxyoctadecadienoic acid. Venous blood samples were collected from healthy, premenopausal female volunteers during either the daytime, nighttime, or nighttime following 90 minutes of ocular bright, white fluorescent light exposure at 580 microW/cm2 (i.e., 2,800 lx). Compared with tumors perfused with daytime-collected melatonin-deficient blood, human breast cancer xenografts and rat hepatomas perfused in situ, with nocturnal, physiologically melatonin-rich blood collected during the night, exhibited markedly suppressed proliferative activity and linoleic acid uptake/metabolism. Tumors perfused with melatonin-deficient blood collected following ocular exposure to light at night exhibited the daytime pattern of high tumor proliferative activity. These results are the first to show that the tumor growth response to exposure to light during darkness is intensity dependent and that the human nocturnal, circadian melatonin signal not only inhibits human breast cancer growth but that this effect is extinguished by short-term ocular exposure to bright, white light at night. These mechanistic studies are the first to provide a rational biological explanation for the increased breast cancer risk in female night shift workers.
Address Laboratory of Chrono-Neuroendocrine Oncology, Bassett Research Institute, The Mary Imogene Bassett Hospital, Cooperstown, New York 13326, USA. david.blask@bassett.org
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-5472 ISBN Medium
Area Expedition Conference
Notes PMID:16322268 Approved no
Call Number LoNNe @ kagoburian @ Serial 721
Permanent link to this record
 

 
Author Boivin, D.; James, F.
Title Light treatment and circadian adaptation to shift work. Type Journal Article
Year 2005 Publication Industrial Health Abbreviated Journal
Volume 43 Issue Pages 34–48
Keywords Human Health
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 1002
Permanent link to this record
 

 
Author Boivin, D.B.; Boudreau, P.; Tremblay, G.M.
Title Phototherapy and orange-tinted goggles for night-shift adaptation of police officers on patrol Type Journal Article
Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 29 Issue 5 Pages 629-640
Keywords Human Health; Adaptation, Physiological/*physiology; Adult; Attention/physiology; Circadian Rhythm/physiology; Color; Darkness; *Eye Protective Devices/adverse effects; Female; Humans; Light; Male; Melatonin/analogs & derivatives/metabolism/urine; Phototherapy/*adverse effects; *Police; Psychomotor Performance/*physiology; Saliva/chemistry; Sleep/physiology; Work Schedule Tolerance/*physiology
Abstract The aim of the present combined field and laboratory study was to assess circadian entrainment in two groups of police officers working seven consecutive 8/8.5-h night shifts as part of a rotating schedule. Eight full-time police officers on patrol (mean age +/- SD: 29.8 +/- 6.5 yrs) were provided an intervention consisting of intermittent exposure to wide-spectrum bright light at night, orange-tinted goggles at sunrise, and maintenance of a regular sleep/darkness episode in the day. Orange-tinted goggles have been shown to block the melatonin-suppressing effect of light significantly more than neutral gray density goggles. Nine control group police officers (mean age +/- SD: 30.3 +/- 4.1 yrs) working the same schedule were enrolled. Police officers were studied before, after (in the laboratory), and during (ambulatory) a series of seven consecutive nights. Urine samples were collected at wake time and bedtime throughout the week of night work and during laboratory visits (1 x /3 h) preceding and following the work week to measure urinary 6-sulfatoxymelatonin (UaMT6s) excretion rate. Subjective alertness was assessed at the start, middle, and end of night shifts. A 10-min psychomotor vigilance task was performed at the start and end of each shift. Both laboratory visits consisted of two 8-h sleep episodes based on the prior schedule. Saliva samples were collected 2 x /h during waking episodes to assay their melatonin content. Subjective alertness (3 x /h) and performance (1 x /2 h) were assessed during wake periods in the laboratory. A mixed linear model was used to analyze the progression of UaMt6s excreted during daytime sleep episodes at home, as well as psychomotor performance and subjective alertness during night shifts. Two-way analysis of variance (ANOVA) (factors: laboratory visit and group) were used to compare peak salivary melatonin and UaMT6s excretion rate in the laboratory. In both groups of police officers, the excretion rate of UaMT6s at home was higher during daytime sleep episodes at the end compared to the start of the work week (p < .001). This rate increased significantly more in the intervention than control group (p = .032). A significant phase delay of salivary melatonin was observed in both groups at the end of study (p = .009), although no significant between-group difference was reached. Reaction speed dropped, and subjective alertness decreased throughout the night shift in both groups (p < .001). Reaction speed decreased throughout the work week in the control group (p </= .021), whereas no difference was observed in the intervention group. Median reaction time was increased as of the 5th and 6th nights compared to the 2nd night in controls (p </= .003), whereas it remained stable in the intervention group. These observations indicate better physiological adaptation in the intervention group compared to the controls.
Address Centre for Study and Treatment of Circadian Rhythms , Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada. diane.boivin@douglas.mcgill.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:22621360 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 509
Permanent link to this record
 

 
Author Boivin, D.B.; Duffy, J.F.; Kronauer, R.E.; Czeisler, C.A.
Title Dose-response relationships for resetting of human circadian clock by light Type Journal Article
Year 1996 Publication Nature Abbreviated Journal Nature
Volume 379 Issue 6565 Pages 540-542
Keywords Human Health; Adult; Body Temperature; Circadian Rhythm/*radiation effects; Dose-Response Relationship, Radiation; Humans; *Light; Male; NASA Discipline Number 18-10; NASA Discipline Regulatory Physiology; NASA Program Space Physiology and Countermeasures; Non-NASA Center
Abstract Since the first report in unicells, studies across diverse species have demonstrated that light is a powerful synchronizer which resets, in an intensity-dependent manner, endogenous circadian pacemakers. Although it is recognized that bright light (approximately 7,000 to 13,000 lux) is an effective circadian synchronizer in humans, it is widely believed that the human circadian pacemaker is insensitive to ordinary indoor illumination (approximately 50-300 lux). It has been proposed that the relationship between the resetting effect of light and its intensity follows a compressive nonlinear function, such that exposure to lower illuminances still exerts a robust effect. We therefore undertook a series of experiments which support this hypothesis and report here that light of even relatively low intensity (approximately 180 lux) significantly phase-shifts the human circadian pacemaker. Our results clearly demonstrate that humans are much more sensitive to light than initially suspected and support the conclusion that they are not qualitatively different from other mammals in their mechanism of circadian entrainment.
Address Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes PMID:8596632 Approved no
Call Number LoNNe @ kagoburian @ Serial 722
Permanent link to this record
 

 
Author Bonmati-Carrion, M.; Arguelles-Prieto, R.; Martinez-Madrid, M.; Reiter, R.; Hardeland, R.; Rol, M.; Madrid, J.
Title Protecting the Melatonin Rhythm through Circadian Healthy Light Exposure Type Journal Article
Year 2014 Publication International Journal of Molecular Sciences Abbreviated Journal IJMS
Volume 15 Issue 12 Pages 23448-23500
Keywords human health; chronodisruption; circadian; light at night (LAN); melanopsin; melatonin
Abstract Currently, in developed countries, nights are excessively illuminated (light at night), whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD), including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs) and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system.
Address Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1078
Permanent link to this record