|   | 
Details
   web
Records
Author (up) Rydin, C; Bolinder, K
Title Moonlight pollination in the gymnosperm Ephedra (Gnetales) Type Journal Article
Year 2015 Publication Biology Letters Abbreviated Journal Biol. Lett.
Volume 11 Issue 4 Pages 20140993
Keywords Plants; anemophily; entomophily; lunar phases; nocturnal insects; lunar cycle; light at night; Ephedra; Ephedra distachya; pollination
Abstract Most gymnosperms are wind-pollinated, but some are insect-pollinated, and in Ephedra (Gnetales), both wind pollination and insect pollination occur. Little is, however, known about mechanisms and evolution of pollination syndromes in gymnosperms. Based on four seasons of field studies, we show an unexpected correlation between pollination and the phases of the moon in one of our studied species, Ephedra foeminea. It is pollinated by dipterans and lepidopterans, most of them nocturnal, and its pollination coincides with the full moon of July. This may be adaptive in two ways. Many nocturnal insects navigate using the moon. Further, the spectacular reflection of the full-moonlight in the pollination drops is the only apparent means of nocturnal attraction of insects in these plants. In the sympatric but wind-pollinated Ephedra distachya, pollination is not correlated to the full moon but occurs at approximately the same dates every year. The lunar correlation has probably been lost in most species of Ephedra subsequent an evolutionary shift to wind pollination in the clade. When the services of insects are no longer needed for successful pollination, the adaptive value of correlating pollination with the full moon is lost, and conceivably also the trait.
Address Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm 106 91, Sweden
Corporate Author Thesis
Publisher Royal Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1143
Permanent link to this record
 

 
Author (up) Schroer, S., Häffner, E., & Hölker, F.
Title Impact of artificial illumination on the development of a leafmining moth in urban trees Type Journal Article
Year 2019 Publication International Journal of Sustainable Lighting Abbreviated Journal Intl J of Sustainable Lighting
Volume 21 Issue 1 Pages 1-10
Keywords Animals; Insects; Moths; horse-chestnut leafminer; Cameraria ohridella
Abstract Light emission from street lighting or other light sources alters the living conditions for organisms in urban areas. Nowadays, the impact of light at night (ALAN) on urban plants and their trophic environment is not well understood. To gain more insight about herbivore plant’s interaction when exposed to ALAN, outdoor and greenhouse tests were conducted using the horse-chestnut leafminer, Cameraria ohridella, as a test organism due to its adaptive behavior. At the end of the season, the development of chestnut tree leaves and the leafminer were measured at illuminated versus non-illuminated sites in the city of Berlin and the rural area of Brandenburg. Illuminated leaves were larger than those grown in darker rural areas and, extended larval activity was recorded. Additionally, in the greenhouse, infested chestnut seedlings were exposed to two different light regimes; one treatment provided continuous illumination and the other short daylight conditions. After only one week, the mine size was lower on illuminated seedlings, presumably due to reduced leaf senescence. The leafminer developed a lower proportion of diapausing pupae and a higher proportion of free pupae, which leads to a further generation within the season. The results indicate a strong impact of ALAN on plant metabolism, a secondary effect on leafminer development and its larval activity. For urban trees, the consequence might be an increased herbivore / parasite pressure. For herbivores and parasites less adapted to winter damages than the invasive leafminer a reduced dormancy due to direct or indirect effects of ALAN could even threat the population.
Address Leibniz Institute of Freshwat Erecology and Inland Fisheries
Corporate Author Thesis
Publisher International Journal of Sustainable Lighting Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2634
Permanent link to this record
 

 
Author (up) Smit, B.; Boyles, J.G.; Brigham, R.M.; McKechnie, A.E.
Title Torpor in dark times: patterns of heterothermy are associated with the lunar cycle in a nocturnal bird Type Journal Article
Year 2011 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 26 Issue 3 Pages 241-248
Keywords Animals; *Biological Clocks; Birds/*physiology; *Body Temperature Regulation; Ecosystem; *Feeding Behavior; Insects; *Moon; Seasons; South Africa
Abstract Many studies have shown that endotherms become more heterothermic when the costs of thermoregulation are high and/or when limited energy availability constrains thermoregulatory capacity. However, the roles of many ecological variables, including constraints on foraging opportunities and/or success, remain largely unknown. To test the prediction that thermoregulatory patterns should be related to foraging opportunities in a heterothermic endotherm, we examined the relationship between the lunar cycle and heterothermy in Freckled Nightjars (Caprimulgus tristigma), which are visually orienting, nocturnal insectivores that are dependent on ambient light to forage. This model system provides an opportunity to assess whether variation in foraging opportunities influences the expression of heterothermy. The nightjars were active and foraged for insects when moonlight was available but became inactive and heterothermic in the absence of moonlight. Lunar illumination was a much stronger predictor of the magnitude of heterothermic responses than was air temperature (T(a)). Our data suggest that heterothermy was strongly related to variation in foraging opportunities associated with the lunar cycle, even though food abundance appeared to remain relatively high throughout the study period. Patterns of thermoregulation in this population of Freckled Nightjars provide novel insights into the environmental and ecological determinants of heterothermy, with the lunar cycle, and not T(a), being the strongest predictor of torpor use.
Address DST/NRF Centre of Excellence at the Percy FitzPatrick Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa. smitbe@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:21628551 Approved no
Call Number IDA @ john @ Serial 59
Permanent link to this record
 

 
Author (up) Solano Lamphar, H.A.; Kocifaj, M.
Title Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 2 Pages e56563
Keywords Lighting; Animals; *Environmental Pollution; Humans; Insects; Light; Lighting/*adverse effects; Models, Theoretical; *Visual Perception
Abstract In general terms, lighting research has been focused in the development of artificial light with the purpose of saving energy and having more durable lamps. However, the consequences that artificial night lighting could bring to the human being and living organisms have become an important issue recently. Light pollution represents a significant problem to both the environment and human health causing a disruption of biological rhythms related not only to the visible spectrum, but also to other parts of the electromagnetic spectrum. Since the lamps emit across a wide range of the electromagnetic spectrum, all photobiological species may be exposed to another type of light pollution. By comparing five different lamps, the present study attempts to evaluate UV radiative fluxes relative to what humans and two species of insects perceive as sky glow level. We have analyzed three atmospheric situations: clear sky, overcast sky and evolving precipitable water content. One important finding suggests that when a constant illuminance of urban spaces has to be guaranteed the sky glow from the low pressure sodium lamps has the most significant effect to the visual perception of the insects tested. But having the fixed number of luminaires the situation changes and the low pressure sodium lamp would be the best choice for all three species. The sky glow effects can be interpreted correctly only if the lamp types and the required amount of scotopic luxes at the ground are taken into account simultaneously. If these two factors are combined properly, then the ecological consequences of sky glow can be partly reduced. The results of this research may be equally useful for lighting engineers, architects, biologists and researchers who are studying the effects of sky glow on humans and biodiversity.
Address ICA, Slovak Academy of Sciences, Bratislava, Slovak Republic. lamphar@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23441205; PMCID:PMC3575508 Approved no
Call Number LoNNe @ schroer @ Serial 578
Permanent link to this record
 

 
Author (up) Tan, M.K.
Title Why do nocturnal grasshoppers and katydids “salute” to flash photography? Type Journal Article
Year 2019 Publication Entomological Science Abbreviated Journal Entomological Science
Volume 22 Issue 2 Pages 216-219
Keywords Animals; Insects; grasshoppers; katydids; orthoptera
Abstract Nocturnal animals can be sensitive to powerful light from the environment. Anthropogenically induced perturbation to natural light regimes, including ecological light pollution and flash photography, can have wide‐reaching implications on the ecology and behavior. Ecological ramifications of strong lights were traditionally focused on vertebrates although there is now more focus on invertebrates. Nonetheless, there are still unanswered questions on visual ecology and evolution, particularly on individual‐level effects and of tropical species. Specifically, how invertebrate individuals react to strong light is generally undocumented. Based on opportunistic surveys around Southeast Asia, orthopterans, spotted using concentrated torchlight and exposed to sudden strong light intensity during flash macrophotography, were observed to screen themselves by positioning their foreleg over the dorsum of the compound eye. This resembled the orthopteran “saluting” to the camera. These observations provided empirical evidence of how high intensity light can unsettle orthopterans and other insects and further ecological and evolutionary hypotheses and questions can be raised to understand the effect of light pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1343-8786 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2324
Permanent link to this record