toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dacke, M.; Baird, E.; Byrne, M.; Scholtz, C.H.; Warrant, E.J. url  doi
openurl 
  Title Dung beetles use the Milky Way for orientation Type Journal Article
  Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol  
  Volume 23 Issue 4 Pages 298-300  
  Keywords Animals; Beetles/*physiology; *Behavior, Animal; Cues; Feces; *Galaxies; Locomotion; Moon; Motor Activity; Orientation/*physiology; *Stars, Celestial; Vision, Ocular/physiology; Milky Way; insects  
  Abstract When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom.  
  Address Department of Biology, Lund University, 223 62 Lund, Sweden. marie.dacke@biol.lu.se  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0960-9822 ISBN Medium  
  Area Expedition Conference (up)  
  Notes PMID:23352694 Approved no  
  Call Number IDA @ john @ Serial 116  
Permanent link to this record
 

 
Author Narendra, A.; Reid, S.F.; Raderschall, C.A. url  doi
openurl 
  Title Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels Type Journal Article
  Year 2013 Publication PloS one Abbreviated Journal PLoS One  
  Volume 8 Issue 3 Pages e58801  
  Keywords Adaptation, Biological/*physiology; Animals; Ants/*physiology; Australian Capital Territory; *Cues; Geographic Information Systems; Homing Behavior/*physiology; *Light; Locomotion/*physiology; Orientation/*physiology; insects  
  Abstract Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available.  
  Address ARC Centre of Excellence in Vision Science, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia. ajay.narendra@anu.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference (up)  
  Notes PMID:23484052; PMCID:PMC3590162 Approved no  
  Call Number IDA @ john @ Serial 117  
Permanent link to this record
 

 
Author Nwosu, L.C.; Nwosu, L.K. url  doi
openurl 
  Title Influence of Type of Electric Bright Light on the Attraction of the African Giant Water Bug, Lethocerus indicus (Hemiptera: Belostomatidae) Type Journal Article
  Year 2012 Publication Psyche: A Journal of Entomology Abbreviated Journal Psyche: A Journal of Entomology  
  Volume 2012 Issue Pages 1-4  
  Keywords insects; bugs; African giant water bug; Lethocerus indicus; Hemiptera; Belostomatidae  
  Abstract This study investigated the influence of type of electric bright light (produced by fluorescent light tube and incandescent light bulb) on the attraction of the African giant water bug, Lethocerus indicus (Hemiptera: Belostomatidae). Four fluorescent light tubes of 15 watts each, producing white-coloured light and four incandescent light bulbs of 60 watts each, producing yellow-coloured light, but both producing the same amount of light, were varied and used for the experiments. Collections of bugs at experimental house were done at night between the hours of 8.30 pm and 12 mid-night on daily basis for a period of four months per experiment in the years 2008 and 2009. Lethocerus indicus whose presence in any environment has certain implications was the predominant belostomatid bug in the area. Use of incandescent light bulbs in 2009 significantly attracted more Lethocerus indicus 103 (74.6%) than use of fluorescent light tubes 35 (25.41%) in 2008 [

&#119875; < 0 . 0 5

;

&#119875; ( &#119885; > 4 . 9 2 ) = 0 . 0 0 0 1

]. However, bug’s attraction to light source was not found sex dependent [

&#119875; > 0 . 0 5

;

&#119875;

(

&#119885; > 0 . 1 8 ) = 0 . 4 2 8 6

and

&#119885; > 0 . 2 8 = 0 . 3 8 9 7

]. Therefore, this study recommends the use of fluorescent light by households, campgrounds, and other recreational centres that are potentially exposed to the nuisance of the giant water bugs. Otherwise, incandescent light bulbs should be used when it is desired to attract the presence of these aquatic bugs either for food or scientific studies.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-2615 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number IDA @ john @ Serial 118  
Permanent link to this record
 

 
Author Kelber, A. url  doi
openurl 
  Title Light intensity limits foraging activity in nocturnal and crepuscular bees Type Journal Article
  Year 2005 Publication Behavioral Ecology Abbreviated Journal Behavioral Ecology  
  Volume 17 Issue 1 Pages 63-72  
  Keywords bees; eyes; foraging; insects; ocelli; sensitivity; visual ecology  
  Abstract A crepuscular or nocturnal lifestyle has evolved in bees several times independently, probably to explore rewarding pollen sources without competition and to minimize predation and nest parasites. Despite these obvious advantages, only few bee species are nocturnal. Here we show that the sensitivity of the bee apposition eye is a major factor limiting the ability to forage in dim light. We present data on eye size, foraging times, and light levels for Megalopta genalis (Augochlorini, Halictidae) in Panama, and Lasioglossum (Sphecodogastra) sp. (Halictini, Halictidae) in Utah, USA. M. genalis females forage exclusively during twilight, but as a result of dim light levels in the rain forest, they are adapted to extremely low intensities. The likely factor limiting their foraging activity is finding their nest entrance on return from a foraging trip. The lowest light intensity at which they can do this, both in the morning and the evening, is 0.0001 cd m&#8722;2. Therefore, they leave the nest at dimmer light levels in the morning than in the evening. Lasioglossum (Sphecodogastra) foraging is limited by light intensity in the evening, but probably by temperature in the morning in the temperate climate of Utah. We propose that the evolution of nocturnality in bees was favored by the large variance in the size of females.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1045-2249 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number IDA @ john @ Serial 119  
Permanent link to this record
 

 
Author van Geffen, K.G.; van Grunsven, R.H.A.; van Ruijven, J.; Berendse, F.; Veenendaal, E.M. url  doi
openurl 
  Title Artificial light at night causes diapause inhibition and sex-specific life history changes in a moth Type Journal Article
  Year 2014 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume 4 Issue 11 Pages 2082–2089  
  Keywords Caterpillars; development time; diapause; light pollution; pupal mass; pupation; light exposure; light pollution; biology; moths; insects; Mamestra brassicae  
  Abstract Rapidly increasing levels of light pollution subject nocturnal organisms to major alterations of their habitat, the ecological consequences of which are largely unknown. Moths are well-known to be attracted to light at night, but effects of light on other aspects of moth ecology, such as larval development and life-history, remain unknown. Such effects may have important consequences for fitness and thus for moth population sizes. To study the effects of artificial night lighting on development and life-history of moths, we experimentally subjected Mamestra brassicae (Noctuidae) caterpillars to low intensity green, white, red or no artificial light at night and determined their growth rate, maximum caterpillar mass, age at pupation, pupal mass and pupation duration. We found sex-specific effects of artificial light on caterpillar life-history, with male caterpillars subjected to green and white light reaching a lower maximum mass, pupating earlier and obtaining a lower pupal mass than male caterpillars under red light or in darkness. These effects can have major implications for fitness, but were absent in female caterpillars. Moreover, by the time that the first adult moth from the dark control treatment emerged from its pupa (after 110 days), about 85% of the moths that were under green light and 83% of the moths that were under white light had already emerged. These differences in pupation duration occurred in both sexes and were highly significant, and likely result from diapause inhibition by artificial night lighting. We conclude that low levels of nocturnal illumination can disrupt life-histories in moths and inhibit the initiation of pupal diapause. This may result in reduced fitness and increased mortality. The application of red light, instead of white or green light, might be an appropriate measure to mitigate negative artificial light effects on moth life history.  
  Address 1 Nature Conservation and Plant Ecology Group, Wageningen University, Droevendaalsesteeg 3a, P.O. box 47, 6700 AA, Wageningen, the Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference (up)  
  Notes Approved no  
  Call Number IDA @ john @ Serial 306  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: