|   | 
Details
   web
Records
Author Nwosu, L.C.; Nwosu, L.K.
Title Influence of Type of Electric Bright Light on the Attraction of the African Giant Water Bug, Lethocerus indicus (Hemiptera: Belostomatidae) Type Journal Article
Year 2012 Publication Psyche: A Journal of Entomology Abbreviated Journal Psyche: A Journal of Entomology
Volume 2012 Issue Pages 1-4
Keywords (up) insects; bugs; African giant water bug; Lethocerus indicus; Hemiptera; Belostomatidae
Abstract This study investigated the influence of type of electric bright light (produced by fluorescent light tube and incandescent light bulb) on the attraction of the African giant water bug, Lethocerus indicus (Hemiptera: Belostomatidae). Four fluorescent light tubes of 15 watts each, producing white-coloured light and four incandescent light bulbs of 60 watts each, producing yellow-coloured light, but both producing the same amount of light, were varied and used for the experiments. Collections of bugs at experimental house were done at night between the hours of 8.30 pm and 12 mid-night on daily basis for a period of four months per experiment in the years 2008 and 2009. Lethocerus indicus whose presence in any environment has certain implications was the predominant belostomatid bug in the area. Use of incandescent light bulbs in 2009 significantly attracted more Lethocerus indicus 103 (74.6%) than use of fluorescent light tubes 35 (25.41%) in 2008 [

&#119875; < 0 . 0 5

;

&#119875; ( &#119885; > 4 . 9 2 ) = 0 . 0 0 0 1

]. However, bug’s attraction to light source was not found sex dependent [

&#119875; > 0 . 0 5

;

&#119875;

(

&#119885; > 0 . 1 8 ) = 0 . 4 2 8 6

and

&#119885; > 0 . 2 8 = 0 . 3 8 9 7

]. Therefore, this study recommends the use of fluorescent light by households, campgrounds, and other recreational centres that are potentially exposed to the nuisance of the giant water bugs. Otherwise, incandescent light bulbs should be used when it is desired to attract the presence of these aquatic bugs either for food or scientific studies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-2615 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 118
Permanent link to this record
 

 
Author van Langevelde, F.; Ettema, J.A.; Donners, M.; WallisDeVries, M.F.; Groenendijk, D.
Title Effect of spectral composition of artificial light on the attraction of moths Type Journal Article
Year 2011 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 144 Issue 9 Pages 2274-2281
Keywords (up) insects; moths; artificial light; ecology; population dynamics
Abstract During the last decades, artificial night lighting has increased globally, which largely affected many plant and animal species. So far, current research highlights the importance of artificial light with smaller wavelengths in attracting moths, yet the effect of the spectral composition of artificial light on species richness and abundance of moths has not been studied systematically. Therefore, we tested the hypotheses that (1) higher species richness and higher abundances of moths are attracted to artificial light with smaller wavelengths than to light with larger wavelengths, and (2) this attraction is correlated with morphological characteristics of moths, especially their eye size. We indeed found higher species richness and abundances of moths in traps with lamps that emit light with smaller wavelengths. These lamps attracted moths with on average larger body mass, larger wing dimensions and larger eyes. Cascading effects on biodiversity and ecosystem functioning, e.g. pollination, can be expected when larger moth species are attracted to these lights. Predatory species with a diet of mainly larger moth species and plant species pollinated by larger moth species might then decline. Moreover, our results indicate a size-bias in trapping moths, resulting in an overrepresentation of larger moth species in lamps with small wavelengths. Our study indicates the potential use of lamps with larger wavelengths to effectively reduce the negative effect of light pollution on moth population dynamics and communities where moths play an important role.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 114
Permanent link to this record
 

 
Author Degen, T.; Hovestadt, T.; Mitesser, O.; Hölker, F.
Title Altered sex-specific mortality and female mating success: ecological effects and evolutionary responses Type Journal Article
Year 2017 Publication Ecosphere Abbreviated Journal Ecosphere
Volume 8 Issue 5 Pages e01820
Keywords (up) Insects; nocturnal insects; mating behaviour
Abstract Theory predicts that males and females should often join the mating pool at different times (sexual dimorphism in timing of emergence [SDT]) as the degree of SDT affects female mating success. We utilize an analytical model to explore (1) how important SDT is for female mating success, (2) how mating success might change if either sex's mortality (abruptly) increases, and (3) to what degree evolutionary responses in SDT may be able to mitigate the consequences of such mortality increase. Increasing male pre-mating mortality has a non-linear effect on the fraction of females mated: The effect is initially weak, but at some critical level a further increase in male mortality has a stronger effect than a similar increase in female mortality. Such a change is expected to impose selection for reduced SDT. Increasing mortality during the mating season has always a stronger effect on female mating success if the mortality affects the sex that emerges first. This bias results from the fact that enhancing mortality of the earlier emerging sex reduces femaleâ??male encounter rates. However, an evolutionary response in SDT may effectively mitigate such consequences. Further , if considered independently for females and males, the predicted evolutionary response in SDT could be quite dissimilar. The difference between female and male evolutionary response in SDT leads to marked differences in the fraction of fertilized females under certain conditions. Our model may provide general guidelines for improving harvesting of populations, conservation management of rare species under altered environmental conditions, or maintaining long-term efficiency of pest-control measures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2150-8925 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1663
Permanent link to this record
 

 
Author Henn, M.; Nichols, H.; Zhang, Y.; Bonner, T.H.
Title Effect of artificial light on the drift of aquatic insects in urban central Texas streams Type Journal Article
Year 2014 Publication Journal of Freshwater Ecology Abbreviated Journal Journal of Freshwater Ecology
Volume 29 Issue 3 Pages 307-318
Keywords (up) light pollution; stream ecology; urban ecology; drift; abiotic factors; Baetidae; Chironomidae; insects; Texas; Simuliidae; Edwards Plateau; light at night; ecology
Abstract Light pollution can reduce night time drift of larval aquatic insects in urban streams by disrupting their circadian rhythms. Previous studies on larval insect drift show that disruption in drift leads to changes in reproduction as well as intraspecific and interspecific interactions. The purpose of this study was to conduct a preliminary investigation into the effects of extreme artificial light on insect drift in urbanized, high clarity spring systems of the karst Edwards Plateau, TX. We quantified taxa richness, diversity, and abundance in aquatic insect night time drift under two treatments (ambient night time light and artificial light addition) and among five streams using a paired design. Richness and diversity of drifting aquatic insects were similar between treatments but abundance was 37% less in the light addition treatment than that of the control. Effects of light addition on mean abundance was more notable in large streams with a 58% decrease in Simuliidae (compared to that of the control) and 51% decrease in Baetidae. Reduced drift from light addition suggests the potential of artificial lighting disrupting insect drift and consequently community structure. Results of this experiment support a growing body of knowledge on how urbanized systems influence stream communities.
Address Department of Biology/Aquatic Station, Texas State University, San Marcos, TX, USA
Corporate Author Thesis
Publisher Taylor & Francis Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0270-5060 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 312
Permanent link to this record
 

 
Author Solano Lamphar, H.A.; Kocifaj, M.
Title Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 2 Pages e56563
Keywords (up) Lighting; Animals; *Environmental Pollution; Humans; Insects; Light; Lighting/*adverse effects; Models, Theoretical; *Visual Perception
Abstract In general terms, lighting research has been focused in the development of artificial light with the purpose of saving energy and having more durable lamps. However, the consequences that artificial night lighting could bring to the human being and living organisms have become an important issue recently. Light pollution represents a significant problem to both the environment and human health causing a disruption of biological rhythms related not only to the visible spectrum, but also to other parts of the electromagnetic spectrum. Since the lamps emit across a wide range of the electromagnetic spectrum, all photobiological species may be exposed to another type of light pollution. By comparing five different lamps, the present study attempts to evaluate UV radiative fluxes relative to what humans and two species of insects perceive as sky glow level. We have analyzed three atmospheric situations: clear sky, overcast sky and evolving precipitable water content. One important finding suggests that when a constant illuminance of urban spaces has to be guaranteed the sky glow from the low pressure sodium lamps has the most significant effect to the visual perception of the insects tested. But having the fixed number of luminaires the situation changes and the low pressure sodium lamp would be the best choice for all three species. The sky glow effects can be interpreted correctly only if the lamp types and the required amount of scotopic luxes at the ground are taken into account simultaneously. If these two factors are combined properly, then the ecological consequences of sky glow can be partly reduced. The results of this research may be equally useful for lighting engineers, architects, biologists and researchers who are studying the effects of sky glow on humans and biodiversity.
Address ICA, Slovak Academy of Sciences, Bratislava, Slovak Republic. lamphar@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23441205; PMCID:PMC3575508 Approved no
Call Number LoNNe @ schroer @ Serial 578
Permanent link to this record