|   | 
Details
   web
Records
Author Bailey, L.A.; Brigham, R.M.; Bohn, S.J.; Boyles, J.G.; Smit, B.
Title An experimental test of the allotonic frequency hypothesis to isolate the effects of light pollution on bat prey selection Type Journal Article
Year 2019 Publication Oecologia Abbreviated Journal Oecologia
Volume 190 Issue 2 Pages 367–374
Keywords Animals; Ecology; bats; moths; insects; mammals
Abstract Artificial lights may be altering interactions between bats and moth prey. According to the allotonic frequency hypothesis (AFH), eared moths are generally unavailable as prey for syntonic bats (i.e., bats that use echolocation frequencies between 20 and 50 kHz within the hearing range of eared moths) due to the moths' ability to detect syntonic bat echolocation. Syntonic bats therefore feed mainly on beetles, flies, true bugs, and non-eared moths. The AFH is expected to be violated around lights where eared moths are susceptible to exploitation by syntonic bats because moths' evasive strategies become less effective. The hypothesis has been tested to date almost exclusively in areas with permanent lighting, where the effects of lights on bat diets are confounded with other aspects of human habitat alteration. We undertook diet analysis in areas with short-term, localized artificial lighting to isolate the effects of artificial lighting and determine if syntonic and allotonic bats (i.e., bats that use echolocation frequencies outside the hearing range of eared moths) consumed more moths under conditions of artificial lights than in natural darkness. We found that syntonic bats increased their consumption of moth prey under experimentally lit conditions, likely owing to a reduction in the ability of eared moths to evade the bats. Eared moths may increase in diets of generalist syntonic bats foraging around artificial light sources, as opposed to allotonic species and syntonic species with a more specialized diet.
Address Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa. b.smit@ru.ac.za
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-8549 ISBN Medium
Area Expedition Conference
Notes (up) PMID:31139944 Approved no
Call Number GFZ @ kyba @ Serial 2511
Permanent link to this record
 

 
Author Kim, K.-N.; Huang, Q.-Y.; Lei, C.-L.
Title Advances in insect phototaxis and application to pest management: A review Type Journal Article
Year 2019 Publication Pest Management Science Abbreviated Journal Pest Manag Sci
Volume 75 Issue 12 Pages 3135-3143
Keywords Animals; review; Insects; Phototaxis; Integrated pest management
Abstract Many insects, especially nocturnal insects, exhibit positive phototaxis to artificial lights. Many light traps are currently used to monitor and manage insect pest populations, with light traps playing a crucial role in physical pest control. Efficient use of light traps to attract target insect pests becomes an important topic in application of integrated pest management (IPM). Phototactic responses of insects vary among species, light characteristics and the physiological status of the insects. In addition, light can cause several biological responses, including biochemical, physiological, molecular and fitness changes in insects. In this review, we discuss several hypotheses on insect phototaxis, affecting factors on insect phototaxis, insect sensitive wavelengths, biological responses of insects to light and countermeasures for conserving beneficial insects and increasing trapping effect. Additionally, we provide information on the different sensitivities to wavelengths causing positive phototactic behavior on more than 70 insect pest and beneficial insect species. The use of advanced light traps equipped with superior light sources, such as light emitting diodes (LEDs), will make physical pest control in IPM more efficient. This article is protected by copyright. All rights reserved.
Address Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1526-498X ISBN Medium
Area Expedition Conference
Notes (up) PMID:31251458 Approved no
Call Number GFZ @ kyba @ Serial 2574
Permanent link to this record