|   | 
Details
   web
Records
Author Johansen, N.S.; Vänninen, I.; Pinto, D.M.; Nissinen, A.I.; Shipp, L.
Title In the light of new greenhouse technologies: 2. Direct effects of artificial lighting on arthropods and integrated pest management in greenhouse crops Type Journal Article
Year (down) 2011 Publication Annals of Applied Biology Abbreviated Journal
Volume 159 Issue 1 Pages 1-27
Keywords Behaviour; biology; insects; light intensity; mites; photobiology; photoperiod; photoreceptors; plant protection; visual ecology; wavelength distribution
Abstract Novel lighting technology offers the possibility of improved arthropod integrated pest management (IPM) in artificially lighted crops. This review compiles the current knowledge on how greenhouse pest and beneficial arthropods are directly affected by light, with the focus on whiteflies. The effect of ultraviolet depletion on orientation and colour-coded phototaxis are to some extent studied and utilised for control of the flying adult stage of some pest species, but far less is known about the visual ecology of commercially used biological control agents and pollinators, and about how light affects arthropod biology in different life stages. Four approaches for utilisation of artificial light in IPM of whiteflies are suggested: (a) use of attractive visual stimuli incorporated into traps for monitoring and direct control, (b) use of visual stimuli that disrupt the host-detection process, (c) radiation with harmful or inhibitory wavelengths to kill or suppress pest populations and (d) use of time cues to manipulate daily rhythms and photoperiodic responses. Knowledge gaps are identified to design a road map for research on IPM in crops lighted with high-pressure sodium lamps, light-emitting diodes (LEDs) and photoselective films. LEDs are concluded to offer possibilities for behavioural manipulation of arthropods, but the extent of such possibilities depends in practice on which wavelength combinations are determined to be optimal for plant production. Furthermore, the direct effects of artificial lighting on IPM must be studied in the context of plant-mediated effects of artificial light on arthropods, as both types of manipulations are possible, particularly with LEDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-4746 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 112
Permanent link to this record
 

 
Author van Langevelde, F.; Ettema, J.A.; Donners, M.; WallisDeVries, M.F.; Groenendijk, D.
Title Effect of spectral composition of artificial light on the attraction of moths Type Journal Article
Year (down) 2011 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 144 Issue 9 Pages 2274-2281
Keywords insects; moths; artificial light; ecology; population dynamics
Abstract During the last decades, artificial night lighting has increased globally, which largely affected many plant and animal species. So far, current research highlights the importance of artificial light with smaller wavelengths in attracting moths, yet the effect of the spectral composition of artificial light on species richness and abundance of moths has not been studied systematically. Therefore, we tested the hypotheses that (1) higher species richness and higher abundances of moths are attracted to artificial light with smaller wavelengths than to light with larger wavelengths, and (2) this attraction is correlated with morphological characteristics of moths, especially their eye size. We indeed found higher species richness and abundances of moths in traps with lamps that emit light with smaller wavelengths. These lamps attracted moths with on average larger body mass, larger wing dimensions and larger eyes. Cascading effects on biodiversity and ecosystem functioning, e.g. pollination, can be expected when larger moth species are attracted to these lights. Predatory species with a diet of mainly larger moth species and plant species pollinated by larger moth species might then decline. Moreover, our results indicate a size-bias in trapping moths, resulting in an overrepresentation of larger moth species in lamps with small wavelengths. Our study indicates the potential use of lamps with larger wavelengths to effectively reduce the negative effect of light pollution on moth population dynamics and communities where moths play an important role.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 114
Permanent link to this record
 

 
Author Chaves, I.; Pokorny, R.; Byrdin, M.; Hoang, N.; Ritz, T.; Brettel, K.; Essen, L.-O.; van der Horst, G.T.J.; Batschauer, A.; Ahmad, M.
Title The cryptochromes: blue light photoreceptors in plants and animals Type Journal Article
Year (down) 2011 Publication Annual Review of Plant Biology Abbreviated Journal Annu Rev Plant Biol
Volume 62 Issue Pages 335-364
Keywords Adenosine Triphosphate/metabolism; Animals; Cryptochromes/chemistry/classification/*physiology; DNA Repair; Deoxyribodipyrimidine Photo-Lyase/chemistry/classification/physiology; Homing Behavior; Insects/physiology; *Light Signal Transduction; Magnetics; Mice; Oxidation-Reduction; Phosphorylation/physiology; Plants/*metabolism; blue light
Abstract Cryptochromes are flavoprotein photoreceptors first identified in Arabidopsis thaliana, where they play key roles in growth and development. Subsequently identified in prokaryotes, archaea, and many eukaryotes, cryptochromes function in the animal circadian clock and are proposed as magnetoreceptors in migratory birds. Cryptochromes are closely structurally related to photolyases, evolutionarily ancient flavoproteins that catalyze light-dependent DNA repair. Here, we review the structural, photochemical, and molecular properties of cry-DASH, plant, and animal cryptochromes in relation to biological signaling mechanisms and uncover common features that may contribute to better understanding the function of cryptochromes in diverse systems including in man.
Address Department of Genetics, Erasmus University Medical Center, 3000 CA Rotterdam, The Netherlands. i.chaves@erasmusmc.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1543-5008 ISBN Medium
Area Expedition Conference
Notes PMID:21526969 Approved no
Call Number IDA @ john @ Serial 341
Permanent link to this record
 

 
Author Kelber, A.
Title Light intensity limits foraging activity in nocturnal and crepuscular bees Type Journal Article
Year (down) 2005 Publication Behavioral Ecology Abbreviated Journal Behavioral Ecology
Volume 17 Issue 1 Pages 63-72
Keywords bees; eyes; foraging; insects; ocelli; sensitivity; visual ecology
Abstract A crepuscular or nocturnal lifestyle has evolved in bees several times independently, probably to explore rewarding pollen sources without competition and to minimize predation and nest parasites. Despite these obvious advantages, only few bee species are nocturnal. Here we show that the sensitivity of the bee apposition eye is a major factor limiting the ability to forage in dim light. We present data on eye size, foraging times, and light levels for Megalopta genalis (Augochlorini, Halictidae) in Panama, and Lasioglossum (Sphecodogastra) sp. (Halictini, Halictidae) in Utah, USA. M. genalis females forage exclusively during twilight, but as a result of dim light levels in the rain forest, they are adapted to extremely low intensities. The likely factor limiting their foraging activity is finding their nest entrance on return from a foraging trip. The lowest light intensity at which they can do this, both in the morning and the evening, is 0.0001 cd m−2. Therefore, they leave the nest at dimmer light levels in the morning than in the evening. Lasioglossum (Sphecodogastra) foraging is limited by light intensity in the evening, but probably by temperature in the morning in the temperate climate of Utah. We propose that the evolution of nocturnality in bees was favored by the large variance in the size of females.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1045-2249 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 119
Permanent link to this record
 

 
Author Burkett, D.A.; Butler, J.F.
Title Laboratory Evaluation of Colored Light as an Attractant for Female Aedes Aegypti, Aedes Albopictus, Anopheles Quadrimaculatus, and Culex Nigripalpus Type Journal Article
Year (down) 2005 Publication The Florida Entomologist Abbreviated Journal Florida Entomologist
Volume 88 Issue 4 Pages 383-389
Keywords Animals; insects; mosquito; visualometer; Aedes albopictus; Aedes aegypti; Anopheles quadrimaculatus; Culex nigripalpus; Feeding Behavior
Abstract Mosquito feeding activity was monitored in an electronic apparatus (visualometer), having ten ports, illuminated from below with narrow bandwidths of light (700, 650, 600, 550, 500, 450, 400, or 350 nm). Responses of adult female Aedes albopictus Skuse, Ae. aegypti (L.), Anopheles quadrimaculatus, Say and Culex nigripalpus Theobald to feeding stations (blood containers) over each light port. No-light and broad spectrum white light were used as controls. Color preferences were based on electronic detection of feeding times. Aedes aegypti showed no significant feeding preferences over any of the colors. Conversely, Ae. albopictus, An. quadrimaculatus, and Cx. nigripalpus showed preferences for several of the wavelengths of light. In decreasing order, Aedes albopictus fed significantly longer at 600 nm, 500 nm, white, 450 nm, 400 nm, and black. For An. quadrimaculatus, significantly longer feeding durations were found over the black or white controls and all other individual wavelengths had significantly longer feeding durations than 350 nm. Finally, in decreasing order, significantly greater feeding times were recorded for Cx. nigripalpus over 500 nm, 600 nm, 450 nm, white, 650 nm, and 550 nm compared to the other wavelengths tested.
Address Range Operations Environmental ACC/DOPP HQACC-Ranges, Airfields & Airspace Ops; douglas.burkett(at)langley.af.mil
Corporate Author Thesis
Publisher Florida Entomological Society Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1938-5102 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1368
Permanent link to this record