|   | 
Details
   web
Records
Author Nicole Wonderlin, L. M. Ross, Peter White
Title Construction and performance of a novel capturemark-release moth trap Type Journal Article
Year 2017 Publication The Great Lakes Entomologist Abbreviated Journal
Volume 50 Issue in press Pages in press
Keywords Animals; Instrumentation
Abstract (up) Mark-recapture studies can provide important information about moth movement as well as habitat preference across a landscape, but to date, such studies tend to be species-specific or require labor-intensive methodologies. To address this challenge, we designed a capture-mark-release-trap (CMRT) featuring a cooling unit attached to a black light trap. The CMRT captures and incapacitates moths throughout the night until the morning, when they can be marked on-site and released. Moths captured with the CMRT during summer of 2016 had a recapture rate of 1.6%, similar to those of previous studies. Importantly, because moths are immobilized by the CMRT, they can be handled and marked with ease, reducing the opportunities to damage specimens prior to release. The CMRT can capture a wide array of moth species and may facilitate an increase in the monitoring of moth movement across landscapes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1756
Permanent link to this record
 

 
Author Li, X.; Li, D.; Xu, H.; Wu, C.
Title Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War Type Journal Article
Year 2017 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 38 Issue 21 Pages 5934-5951
Keywords Remote Sensing; Instrumentation; Society
Abstract (up) Monthly composites of night-time light acquired from the Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) had been used to evaluate socio-economic dynamics and human rights during the Syrian Civil War, which started in March 2011. However, DMSP/OLS monthly composites are not available subsequent to February 2014, and the only available night-time light composites for that period were acquired from the Suomi National Polar-orbiting Partnership satellite’s Visible Infrared Imaging Radiometer Suite (Suomi NPP/VIIRS). This article proposes an intercalibration model to simulate DMSP/OLS composites from the VIIRS day-and-night band (DNB) composites, by using a power function for radiometric degradation and a Gaussian low pass filter for spatial degradation. The DMSP/OLS data and the simulated DMSP/OLS data were combined to estimate the city light dynamics in Syria’s major human settlement between March 2011 and January 2017. Our analysis shows that Syria’s major human settlement lost about 79% of its city light by January 2017, with Aleppo, Daraa, Deir ez-Zor, and Idlib provinces losing 89%, 90%, 96%, and 99% of their light, respectively, indicating that these four provinces were most affected by the war. We also found that the city light in Syria and 12 provinces rebounded from early 2016 to January 2017, possibly as a result of the peace negotiation signed in Geneva.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1873
Permanent link to this record
 

 
Author Jechow, A.; Kolláth, Z.; Lerner, A.; Hänel, A.; Shashar, N.; Hölker, F.; Kyba, C.C.M.
Title Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat–A Proof of Concept Type Journal Article
Year 2017 Publication International Journal of Sustainable Lighting Abbreviated Journal
Volume 19 Issue 1 Pages 15-25
Keywords Skyglow; Instrumentation
Abstract (up) Near all-sky imaging photometry was performed from a boat on the Gulf of Aqaba to measure the night sky brightness in a coastal environment. The boat was not anchored, and therefore drifted and rocked. The camera was mounted on a tripod without any inertia/motion stabilization. A commercial digital single lens reflex (DSLR) camera and fisheye lens were used with ISO setting of 6400, with the exposure time varied between 0.5 s and 5 s. We find that despite movement of the vessel the measurements produce quantitatively comparable results apart from saturation effects. We discuss the potential and limitations of this method for mapping light pollution in marine and freshwater systems. This work represents the proof of concept that all-sky photometry with a commercial DSLR camera is a viable tool to determine light pollution in an ecological context from a moving boat.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2151
Permanent link to this record
 

 
Author Windle, A. E., Hooley, D. S., & Johnston, D. W.
Title Robotic Vehicles Enable High-Resolution Light Pollution Sampling of Sea Turtle Nesting Beaches Type Journal Article
Year 2018 Publication Frontiers in Marine Science Abbreviated Journal
Volume 5 Issue 493 Pages
Keywords Instrumentation; Animals; Skyglow
Abstract (up) Nesting sea turtles appear to avoid brightly lit beaches and often turn back to sea prematurely when exposed to artificial light. Observations and experiments have noted that nesting turtles prefer darker areas where buildings and high dunes act as light barriers. As a result, sea turtles often nest on darker beaches, creating spatial concentrations of nests. Artificial nighttime light, or light pollution, has been quantified using a variety of methods. However, it has proven challenging to make accurate measurements of ambient light at fine scales and on smaller nesting beaches. Additionally, light has traditionally been measured from stationary tripods perpendicular to beach vegetation, disregarding the point of view of a nesting sea turtle. In the present study, nighttime ambient light conditions were assessed on three beaches in central North Carolina: a developed coastline of a barrier island, a nearby State Park on the same barrier island comprised of protected and undeveloped land, and a completely uninhabited wilderness on an adjacent barrier island in the Cape Lookout National Seashore. Using an autonomous terrestrial rover, high resolution light measurements (mag/arcsec2) were collected every minute with two ambient light sensors along transects on each beach. Spatial comparisons between ambient light and nesting density at and between these locations reveal that highest densities of nests occur in regions with lowest light levels, supporting the hypothesis that light pollution from coastal development may influence turtle nesting distribution. These results can be used to support ongoing management strategies to mitigate this pressing conservation issue.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2315
Permanent link to this record
 

 
Author Hampf, D.; Rowell, G.; Wild, N.; Sudholz, T.; Horns, D.; Tluczykont, M.
Title Measurement of night sky brightness in southern Australia Type Journal Article
Year 2011 Publication Advances in Space Research Abbreviated Journal Advances in Space Research
Volume 48 Issue 6 Pages 1017-1025
Keywords Observatories and site testing; Airglow and aurorae; Photometric, polarimetric, and spectroscopic instrumentation
Abstract (up) Night sky brightness is a major source of noise both for Cherenkov telescopes as well as for wide-angle Cherenkov detectors. Therefore, it is important to know the level of night sky brightness at potential sites for future experiments.

The measurements of night sky brightness presented here were carried out at Fowler’s Gap, a research station in New South Wales, Australia, which is a potential site for the proposed TenTen Cherenkov telescope system and the planned wide-angle Cherenkov detector system HiSCORE.

A portable instrument was developed and measurements of the night sky brightness were taken in February and August 2010. Brightness levels were measured for a range of different sky regions and in various spectral bands.

The night sky brightness in the relevant wavelength regime for photomultipliers was found to be at the same level as measured in similar campaigns at the established Cherenkov telescope sites of Khomas, Namibia, and at La Palma. The brightness of dark regions in the sky is about 2 × 1012 photons/(s sr m2) between 300 nm and 650 nm, and up to four times brighter in bright regions of the sky towards the galactic plane. The brightness in V band is 21.6 magnitudes per arcsec2 in the dark regions. All brightness levels are averaged over the field of view of the instrument of about 1.3 × 10−3 sr.

The spectrum of the night sky brightness was found to be dominated by longer wavelengths, which allows to apply filters to separate the night sky brightness from the blue Cherenkov light. The possible gain in the signal to noise ratio was found to be up to 1.2, assuming an ideal low-pass filter.
Address Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0273-1177 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 189
Permanent link to this record