toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ayuga, C.E.T.; Zamorano, J. url  doi
openurl 
  Title LICA AstroCalc, a software to analyze the impact of artificial light: Extracting parameters from the spectra of street and indoor lamps Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 214 Issue Pages 33-38  
  Keywords Vision; Lighting; Instrumentation  
  Abstract (up) The night sky spectra of light-polluted areas is the result of the artificial light scattered back from the atmosphere and the reemission of the light after reflections in painted surfaces. This emission comes mainly from street and decorative lamps. We have built an extensive database of lamps spectra covering from UV to near IR and the software needed to analyze them. We describe the LICA-AstroCalc free software that is a user friendly GUI tool to extract information from our database spectra or any other user provided spectrum. The software also includes the complete color database of paints from NCS comprising 1950 types. This helps to evaluate how different colors modify the reflected spectra from different lamps. All spectroscopic measurements have been validated with recommendations from CIELAB and ISO from NCS database.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1882  
Permanent link to this record
 

 
Author Bierman, A.; Figueiro, M.G.; Rea, M.S. url  doi
openurl 
  Title Measuring and predicting eyelid spectral transmittance Type Journal Article
  Year 2011 Publication Journal of Biomedical Optics Abbreviated Journal J Biomed Opt  
  Volume 16 Issue 6 Pages 067011  
  Keywords Instrumentation; Human Health  
  Abstract (up) The purpose of the present study was to objectively quantify the spectral transmittance of the eyelid. Reported here are data acquired using a technique that was developed to provide practical and accurate measurements of eyelid transmittance across the visible portion of the electromagnetic spectrum. The empirical data were analyzed in terms of the absorption and scattering characteristics of the constituents of skin to develop a method for predicting eyelid transmission. Results showed that the eyelid has a much higher optical density at short wavelengths than previously published. The mean +/- standard deviation (s.d.) optical density of the eyelid from 450 to 650 nm was 2.1 +/- 0.3 with an optical density range among subjects of approximately 1.0. The study results indicate that skin pigmentation is poorly correlated with eyelid transmission; eyelid transmission is most affected by wavelength-independent macromolecules in the eyelid as well as its overall thickness.  
  Address Rensselaer Polytechnic Institute, Lighting Research Center, 21 Union Street, Troy, New York 12180, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1083-3668 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21721832 Approved no  
  Call Number LoNNe @ kyba @ Serial 1530  
Permanent link to this record
 

 
Author Li, X.; Ma, R.; Zhang, Q.; Li, D.; Liu, S.; He, T.; Zhao, L. url  doi
openurl 
  Title Anisotropic characteristic of artificial light at night – Systematic investigation with VIIRS DNB multi-temporal observations Type Journal Article
  Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 233 Issue Pages 111357  
  Keywords Remote Sensing; Instrumentation  
  Abstract (up) The released VIIRS DNB nightly images, also known as VIIRS DNB daily nighttime images, provide rich information for time series analysis of global socioeconomic dynamics. Anisotropic characteristic is a possible factor that influences the VIIRS DNB radiance at night and its time series analysis. This study aims to investigate the relationship between viewing angles and VIIRS DNB radiance of Suomi NPP satellite in urban areas. First, twenty-nine points were selected globally to explore the angle variation of Suomi NPP satellite views at night. We found that the variation of the satellite viewing zenith angle (VZA) is consistent (e.g. between 0° and 70°) since the range of VZA is fixed depending on the sensor design, and the range of viewing azimuth angle (VAA) increases with the increase of latitude. Second, thirty points in cities of Beijing, Houston, Los Angeles, Moscow, Quito and Sydney, were used to investigate the angle-radiance relationship. We proposed a zenith-radiance quadratic (ZRQ) model and a zenith-azimuth-radiance binary quadratic (ZARBQ) model to quantify the relationship between satellite viewing angles and artificial light radiance, which has been corrected by removing the moonlight and atmospheric impact from VIIRS DNB radiance products. For all the thirty points, the ZRQ and ZARBQ analysis have averaged R2 of 0.50 and 0.53, respectively, which indicates that the viewing angles are important factors influencing the variation of the artificial light radiance, but extending zenith to zenith-azimuth does not much better explain the variation of the observed artificial light. Importantly, based on the data analysis, we can make the hypothesis that building height may affect the relationship between VZA and artificial light, and cold and hot spot effects are clearly found in tall building areas. These findings are potentially useful to reconstruct more stable time series VIIRS DNB images for socioeconomic applications by removing the angular effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2621  
Permanent link to this record
 

 
Author Lee, S.; Cao, C. url  doi
openurl 
  Title Soumi NPP VIIRS Day/Night Band Stray Light Characterization and Correction Using Calibration View Data Type Journal Article
  Year 2016 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 8 Issue 2 Pages 138  
  Keywords Instrumentation  
  Abstract (up) The Soumi NPP VIIRS Day/Night Band (DNB) nighttime imagery quality is affected by stray light contamination. In this study, we examined the relationship between the Earth scene stray light and the signals in VIIRS’s calibrators to better understand stray light characteristics and to improve upon the current correction method. Our analyses showed the calibrator signal to be highly predictive of Earth scene stray light and can provide additional stray light characteristics that are difficult to obtain from Earth scene data alone. In the current stray light correction regions (mid-to-high latitude), the stray light onset angles can be tracked by calibration view data to reduce correction biases. In the southern hemisphere, it is possible to identify the angular extent of the additional stray light feature in the calibration view data and develop a revised correction method to remove the additional stray light occurring during the southern hemisphere springtime. Outside of current stray light correction region, the analysis of calibration view data indicated occasional stray light contamination at low latitude and possible background biases caused by Moon illumination. As stray light affects a significant portion of nighttime scenes, further refinement in characterization and correction is important to ensure VIIRS DNB imagery quality for Soumi NPP and future missions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1378  
Permanent link to this record
 

 
Author Schnitt, S.; Ruhtz, T.; Fischer, J.; Hölker, F.; Kyba, C.C.M. url  doi
openurl 
  Title Temperature stability of the sky quality meter Type Journal Article
  Year 2013 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 13 Issue 9 Pages 12166-12174  
  Keywords *Artifacts; Atmosphere/*analysis; Environmental Monitoring/*instrumentation; Equipment Design; Equipment Failure Analysis; Photometry/*instrumentation; Reproducibility of Results; Sensitivity and Specificity; Temperature; *Transducers; Sky Quality Meter; SQM  
  Abstract (up) The stability of radiance measurements taken by the Sky Quality Meter (SQM)was tested under rapidly changing temperature conditions during exposure to a stable light field in the laboratory. The reported radiance was found to be negatively correlated with temperature, but remained within 7% of the initial reported radiance over a temperature range of -15 degrees C to 35 degrees C, and during temperature changes of -33 degrees C/h and +70 degrees C/h.This is smaller than the manufacturer's quoted unit-to-unit systematic uncertainty of 10%,indicating that the temperature compensation of the SQM is adequate under expected outdoor operating conditions.  
  Address Institute for Space Sciences, Freie Universitat Berlin, Carl-Heinrich-Becker-Weg 6-10, Berlin 12165, Germany. christopher.kyba@wew.fu-berlin.de  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24030682; PMCID:PMC3821345 Approved no  
  Call Number IDA @ john @ Serial 194  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: