toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ayuga, C.E.T.; Zamorano, J. url  doi
openurl 
  Title LICA AstroCalc, a software to analyze the impact of artificial light: Extracting parameters from the spectra of street and indoor lamps Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 214 Issue Pages 33-38  
  Keywords Vision; Lighting; Instrumentation  
  Abstract The night sky spectra of light-polluted areas is the result of the artificial light scattered back from the atmosphere and the reemission of the light after reflections in painted surfaces. This emission comes mainly from street and decorative lamps. We have built an extensive database of lamps spectra covering from UV to near IR and the software needed to analyze them. We describe the LICA-AstroCalc free software that is a user friendly GUI tool to extract information from our database spectra or any other user provided spectrum. The software also includes the complete color database of paints from NCS comprising 1950 types. This helps to evaluate how different colors modify the reflected spectra from different lamps. All spectroscopic measurements have been validated with recommendations from CIELAB and ISO from NCS database.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved (up) no  
  Call Number GFZ @ kyba @ Serial 1882  
Permanent link to this record
 

 
Author Gaydecki, P. url  doi
openurl 
  Title Automated moth flight analysis in the vicinity of artificial light Type Journal Article
  Year 2018 Publication Bulletin of Entomological Research Abbreviated Journal Bull Entomol Res  
  Volume 109 Issue 1 Pages 127-140  
  Keywords Instrumentation; Animals  
  Abstract Instrumentation and software for the automated analysis of insect flight trajectories is described, intended for quantifying the behavioural dynamics of moths in the vicinity of artificial light. For its time, this moth imaging system was relatively advanced and revealed hitherto undocumented insights into moth flight behaviour. The illumination source comprised a 125 W mercury vapour light, operating in the visible and near ultraviolet wavelengths, mounted on top of a mobile telescopic mast at heights of 5 and 7.1 m, depending upon the experiment. Moths were imaged in early September, at night and in field conditions, using a ground level video camera with associated optics including a heated steering mirror, wide angle lens and an electronic image intensifier. Moth flight coordinates were recorded at a rate of 50 images per second (fields) and transferred to a computer using a light pen (the only non-automated operation in the processing sequence). Software extracted ground speed vectors and, by instantaneous subtraction of wind speed data supplied by fast-response anemometers, the airspeed vectors. Accumulated density profiles of the track data revealed that moths spend most of their time at a radius of between 40 and 50 cm from the source, and rarely fly directly above it, from close range. Furthermore, the proportion of insects caught by the trap as a proportion of the number influenced by the light (and within the field of view of the camera) was very low; of 1600 individual tracks recorded over five nights, a total of only 12 were caught. Although trap efficiency is strongly dependent on trap height, time of night, season, moonlight and weather, the data analysis confirmed that moths do not exhibit straightforward positive phototaxis. In general, trajectory patterns become more complex with reduced distance from the illumination, with higher recorded values of speeds and angular velocities. However, these characteristics are further qualified by the direction of travel of the insect; the highest accelerations tended to occur when the insect was at close range, but moving away from the source. Rather than manifesting a simple positive phototaxis, the trajectories were suggestive of disorientation. Based on the data and the complex behavioural response, mathematical models were developed that described ideal density distribution in calm air and light wind speed conditions. The models did not offer a physiological hypothesis regarding the behavioural changes, but rather were tools for quantification and prediction. Since the time that the system was developed, instrumentation, computers and software have advanced considerably, allowing much more to be achieved at a small fraction of the original cost. Nevertheless, the analytical tools remain useful for automated trajectory analysis of airborne insects.  
  Address School of Electrical and Electronic Engineering, University of Manchester,Manchester M13 9PL,UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0007-4853 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29745349 Approved (up) no  
  Call Number GFZ @ kyba @ Serial 1895  
Permanent link to this record
 

 
Author Meier; J.M. openurl 
  Title Temporal Profiles of Urban Lighting: Proposal for a research design and first results from three sites in Berlin Type Journal Article
  Year 2018 Publication International Journal of Sustainable Lighting Abbreviated Journal  
  Volume 20 Issue Pages 11-28  
  Keywords Instrumentation; Lighting; Society  
  Abstract This paper presents and experimentally applies a research design for studying the temporal dimension of outdoor artificial illumination in complex lightscapes such as those of urban centres. It contributes to filling the gap between analyses of high-resolution aerial imagery, which provide detailed but static information on the spatial composition of lightscapes, and existing methods for studying their dynamics, which measure changes at high levels of aggregation. The research design adopts a small-scale, detailed approach by using close-range time-lapse videos to document the on/off patterns of individual light sources as the night progresses. It provides a framework and vocabulary for discrete and comparative analyses of the identified temporal profiles of lighting. This allows for pinpointing similarities and differences among the dynamics of different places, nights or categories of lighting. Its application to three case studies in Berlin indicate that switch-on and switch-off times are clustered, resulting in static and dynamic phases of the night. Midnight is a temporal fault-line, after which full illumination ends as portions of the illumination are extinguished. Switch-off times and -rates differ among the three lightscapes and, especially, among four functional types of lighting that were differentiated: infrastructural and commercial units largely remain on all night, while substantial portions of architectural and indoor lighting are switched off, though at fairly different times. Such findings are valuable for studies based on data collected at specific points in time (aerial imagery, measurements), for informing and monitoring temporally oriented lighting policies, and for understanding urban dynamics at large.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved (up) no  
  Call Number GFZ @ kyba @ Serial 1901  
Permanent link to this record
 

 
Author Bouroussis, C.A.; Topalis, F.V. url  doi
openurl 
  Title The effect of the spectral response of measurement instruments in the assessment of night sky brightness Type Journal Article
  Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume 216 Issue Pages 56-69  
  Keywords Skyglow; Instrumentation  
  Abstract This paper deals with the errors and uncertainties in skyglow measurements caused by the variation of sky's spectrum. It considers the theoretical spectral response of common instruments that are used for light pollution assessment. Various types of light sources were used in this investigation. This study calculates the spectral mismatch errors and the corresponding correction factors for each combination of instrument and light source. The calculation method is described and the results are presented in multiple figures. Calculated data show a big variation in potential errors that can be introduced when comparing readings of diverse instruments without considering the sky spectrum variation. This makes the spectral data of the sky a mandatory input to the dark sky assessment. Useful conclusions, related to instruments with better or worse behaviour, are derived from the calculations. The paper also includes suggestions on how to conduct multi-instrument measurements with or without spectral data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved (up) no  
  Call Number GFZ @ kyba @ Serial 1908  
Permanent link to this record
 

 
Author Jung, B.; Inanici, M. url  doi
openurl 
  Title Measuring circadian lighting through high dynamic range photography Type Journal Article
  Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology  
  Volume in press Issue Pages in press  
  Keywords Instrumentation; Human Health  
  Abstract The human ocular system functions in a dual manner. While the most well-known function is to facilitate vision, a growing body of research demonstrates its role in resetting the internal body clock to synchronize with the 24-hour daily cycle. Most research on circadian rhythms is performed in controlled laboratory environments. Little is known about the variability of circadian light within the built and natural environments. Currently, very few specialized devices measure the circadian light, and they are not accessible to many researchers and practitioners. In this paper, tristimulus colour calibration procedures for high dynamic range photography are developed to measure circadian lighting. Camera colour accuracy is evaluated through CIE trichromatic (XYZ) measurements; and the results demonstrate a strong linear relationship between the camera recordings and a scientific-grade colorimeter. Therefore, it is possible to correct for the colour aberrations and use high dynamic range photographs to measure both photopic and circadian lighting values. Spectrophotometric measurements are collected to validate the methodology. Results demonstrate that measurements from high dynamic range photographs can correspond to the physical quantity of circadian luminance with reasonable precision and repeatability. Circadian data collected in built environments can be utilized to study the impact of design decisions on human circadian entrainment and to create guidelines and metrics for designing circadian friendly environments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved (up) no  
  Call Number GFZ @ kyba @ Serial 1979  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: