|   | 
Details
   web
Records
Author (down) Wahl, F.; Kantermann, T.; Amft, O.
Title How much Light do you get? Estimating Daily Light Exposure using Smartphones Type Conference Article
Year 2014 Publication Proceedings of the 2014 ACM International Symposium on Wearable Computers Abbreviated Journal Proc. of the 2014 ACM International Symposium on Wearable Computers
Volume n/a Issue n/a Pages 43-46
Keywords Instrumentation; light exposure; context inference, light intensity; light intake; circadian clock; circadian rhythm; mobile sensing
Abstract We present an approach to estimate a persons light exposure using smartphones. We used web-sourced weather reports combined with smartphone light sensor data, time of day, and indoor/outdoor information, to estimate illuminance around the user throughout a day. Since light dominates every human’s circadian rhythm and influences the sleep-wake cycle, we developed a smartphone-based system that does not re- quire additional sensors for illuminance estimation. To evaluate our approach, we conducted a free-living study with 12 users, each carrying a smartphone, a head-mounted light reference sensor, and a wrist-worn light sensing device for six consecutive days. Estimated light values were compared to the head-mounted reference, the wrist-worn device and a mean value estimate. Our results show that illuminance could be estimated at less than 20% error for all study participants, outperforming the wrist-worn device. In 9 out of 12 participants the estimation deviated less than 10% from the reference measurements.
Address ACTLab, Chair of Sensor Technology, University of Passau (florian.wahl@uni-passau.de)
Corporate Author Thesis
Publisher ACM Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1206
Permanent link to this record
 

 
Author (down) Voigt, L.P.; Reynolds, K.; Mehryar, M.; Chan, W.S.; Kostelecky, N.; Pastores, S.M.; Halpern, N.A.
Title Monitoring sound and light continuously in an intensive care unit patient room: A pilot study Type Journal Article
Year 2016 Publication Journal of Critical Care Abbreviated Journal Journal of Critical Care
Volume 38 Issue 21 Pages 5952-5961
Keywords Instrumentation; Human Health
Abstract Purpose

To determine the feasibility of continuous recording of sound and light in the intensive care unit (ICU).

Materials and Methods

Four one-hour baseline scenarios in an empty ICU patient room by day and night (doors open or closed and maximal or minimal lighting) and two daytime scenarios simulating a stable and unstable patient (quiet or loud devices and staff) were conducted. Sound and light levels were continuously recorded using a commercially available multisensor monitor and transmitted via the hospital's network to a cloud-based data storage and management system.

Results

The empty ICU room was loud with similar mean sound levels for the day and night simulations of 45–46 dBA. Mean levels for maximal lighting during day and night ranged from 1306–1812 lux and mean levels for minimum lighting were 1–3 lux. The mean sound levels for the stable and unstable patient simulations were 61 and 81 dBA, respectively. The mean light levels were 349 lux for the stable patient and 1947 lux for the unstable patient.

Conclusions

Combined sound and light can be continuously and easily monitored in the ICU setting. Incorporating sound and light monitors in ICU rooms may promote an enhanced patient and staff centered healing environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0883-9441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1614
Permanent link to this record
 

 
Author (down) Tauc, M.J.; Fristrup, K.M.; Repasky, K.S.; Shaw, J.A.
Title Field demonstration of a wing-beat modulation lidar for the 3D mapping of flying insects Type Journal Article
Year 2019 Publication OSA Continuum Abbreviated Journal OSA Continuum
Volume 2 Issue 2 Pages 332
Keywords Instrumentation; Animals
Abstract We describe a wing-beat modulation lidar system designed for the 3D mapping of flying insects in ecological or entomological studies. To better understand the signals from this instrument, we analyzed simulated signals to identify how they were affected by various imperfections, such as variations in the spacing and amplitude of each individual wing-beat reflection. In addition, a radiometric model was used to estimate signal-to-noise ratio to gain insight into the relationships between the optical system design and insect parameters (e.g., wing size, reflectivity, or diffusivity).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2578-7519 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2209
Permanent link to this record
 

 
Author (down) Tapia Ayuga, C.; Sánchez de Miguel, A.; Zamorano Calvo, J.
Title LICA-UCM lamps spectral database Type Report
Year 2015 Publication unpublished Abbreviated Journal
Volume Issue Pages
Keywords Lighting; Instrumentation; technical report; Madrid; Spain; spectroscopy; spectra
Abstract Spectra of the lamps that are used for public lighting and ornamental purposes have been obtained with a portable spectrograph around Madrid city. The database is presented in this report along with a description of the procedures.
Address Grupo UCM de Astrofísica Extragaláctica e Instrumentación Astronómica, Madrid
Corporate Author Thesis
Publisher Place of Publication Madrid Editor
Language English Summary Language Original Title
Series Editor Series Title LICA Reports Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium PDF
Area Expedition Conference
Notes Request to add by CK even though non-peer-reviewed Approved no
Call Number IDA @ john @ Serial 1094
Permanent link to this record
 

 
Author (down) Tamir, R.; Lerner, A.; Haspel, C.; Dubinsky, Z.; Iluz, D.
Title The spectral and spatial distribution of light pollution in the waters of the northern Gulf of Aqaba (Eilat) Type Journal Article
Year 2017 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 7 Issue Pages 42329
Keywords Measurement; Instrumentation; Remote Sensing
Abstract The urbanization of the shores of the Gulf of Aqaba has exposed the marine environment there, including unique fringing coral reefs, to strong anthropogenic light sources. Here we present the first in situ measurements of artificial nighttime light under water in such an ecosystem, with irradiance measured in 12 wavelength bands, at 19 measurement stations spread over 44 square km, and at 30 depths down to 30-m depth. At 1-m depth, we find downwelling irradiance values that vary from 4.6 x 10(-4) muW cm(-2) nm(-1) 500 m from the city to 1 x 10(-6) muW cm(-2) nm(-1) in the center of the gulf (9.5 km from the city) in the yellow channel (589-nm wavelength) and from 1.3 x 10(-4) muW cm(-2 )nm(-1) to 4.3 x 10(-5) muW cm(-2) nm(-1) in the blue channel (443-nm wavelength). Down to 10-m depth, we find downwelling irradiance values that vary from 1 x 10(-6) muW cm(-2 )nm(-1) to 4.6 x 10(-4) muW cm(-2) nm(-1) in the yellow channel and from 2.6 x 10(-5) muW cm(-2) nm(-1) to 1.3 x 10(-4) muW cm(-2) nm(-1) in the blue channel, and we even detected a signal at 30-m depth. This irradiance could influence such biological processes as the tuning of circadian clocks, the synchronization of coral spawning, recruitment and competition, vertical migration of demersal plankton, feeding patterns, and prey/predator visual interactions.
Address School of Agriculture and Environmental Studies, Beit Berl College, Kfar Saba, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:28186138; PMCID:PMC5301253 Approved no
Call Number GFZ @ kyba @ Serial 1861
Permanent link to this record