|   | 
Details
   web
Records
Author (up) Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F.
Title Red is the new black: how the colour of urban skyglow varies with cloud cover Type Journal Article
Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Monthly Notices of the Royal Astronomical Society
Volume 425 Issue 1 Pages 701-708
Keywords Keywords: skyglow; radiative transfer; atmospheric effects; instrumentation: detectors; light pollution
Abstract The development of street lamps based on solid-state lighting technology is likely to introduce a major change in the colour of urban skyglow (one form of light pollution). We demonstrate the need for long-term monitoring of this trend by reviewing the influences it is likely to have on disparate fields. We describe a prototype detector which is able to monitor these changes, and could be produced at a cost low enough to allow extremely widespread use. Using the detector, we observed the differences in skyglow radiance in red, green and blue channels. We find that clouds increase the radiance of red light by a factor of 17.6, which is much larger than that for blue (7.1). We also find that the gradual decrease in sky radiance observed on clear nights in Berlin appears to be most pronounced at longer wavelengths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 272
Permanent link to this record
 

 
Author (up) Lee, B., Lee, Y., Kim, D., & Kim, S.
Title Correction of Lunar Irradiation Effect and Change Detection Using Suomi-NPP Data Type Journal Article
Year 2019 Publication Korean Journal of Remote Sensing Abbreviated Journal
Volume 35 Issue 2 Pages 265-278
Keywords Instrumentation
Abstract Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) data help to enable rapid emergency responses through detection of the artificial and natural disasters occurring at night. The DNB data without correction of lunar irradiance effect distributed by Korea Ocean Science Center (KOSC) has advantage for rapid change detection because of direct receiving. In this study, radiance differences according to the phase of the moon was analyzed for urban and mountain areas in Korean Peninsula using the DNB data directly receiving to KOSC. Lunar irradiance correction algorithm was proposed for the change detection. Relative correction was performed by regression analysis between the selected pixels considering the land cover classification in the reference DNB image during the new moon and the input DNB image. As a result of daily difference image analysis, the brightness value change in urban area and mountain area was

±

30

radiance and below

±

1

radiance respectively. The object based change detection was performed after the extraction of the main object of interest based on the average image of time series data in order to reduce the matching and geometric error between DNB images. The changes in brightness occurring in mountainous areas were effectively detected after the calibration of lunar irradiance effect, and it showed that the developed technology could be used for real time change detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2720
Permanent link to this record
 

 
Author (up) Lee, S.; Cao, C.
Title Soumi NPP VIIRS Day/Night Band Stray Light Characterization and Correction Using Calibration View Data Type Journal Article
Year 2016 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 8 Issue 2 Pages 138
Keywords Instrumentation
Abstract The Soumi NPP VIIRS Day/Night Band (DNB) nighttime imagery quality is affected by stray light contamination. In this study, we examined the relationship between the Earth scene stray light and the signals in VIIRS’s calibrators to better understand stray light characteristics and to improve upon the current correction method. Our analyses showed the calibrator signal to be highly predictive of Earth scene stray light and can provide additional stray light characteristics that are difficult to obtain from Earth scene data alone. In the current stray light correction regions (mid-to-high latitude), the stray light onset angles can be tracked by calibration view data to reduce correction biases. In the southern hemisphere, it is possible to identify the angular extent of the additional stray light feature in the calibration view data and develop a revised correction method to remove the additional stray light occurring during the southern hemisphere springtime. Outside of current stray light correction region, the analysis of calibration view data indicated occasional stray light contamination at low latitude and possible background biases caused by Moon illumination. As stray light affects a significant portion of nighttime scenes, further refinement in characterization and correction is important to ensure VIIRS DNB imagery quality for Soumi NPP and future missions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1378
Permanent link to this record
 

 
Author (up) Levin, N.; Phinn, S.
Title Illuminating the capabilities of Landsat 8 for mapping night lights Type Journal Article
Year 2016 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 182 Issue Pages 27-38
Keywords Remote Sensing; Instrumentation
Abstract Remote sensing of night-lights has been enhanced in recent years with the availability of the new VIIRS Day and Night band, the commercial EROS-B satellite and astronaut photographs from the International Space Station. However, dedicated space-borne multispectral sensors offering radiance calibrated night lights imagery are yet to be launched. Here we examined the capabilities of Landsat 8 to acquire night time light images of the Earth. Examining seven night-time Landsat 8 scenes, we found that brightly lit areas in both urban (Berlin, Las Vegas, Nagoya and Tel-Aviv) and gas flares (Basra, Kuwait) areas were detected in all eight bands of Landsat 8. The threshold for detection of lit areas was approximately 0.4 W/m2/μm/sr in bands 1–5 and 8 of Landsat 8. This threshold level was higher than Landsat dark noise levels, and slightly lower than post launch Landsat 8 OLI band dependent noise equivalent radiance difference levels. Drawing on this, we call on the USGS to plan an annual night-time acquisition of urban and gas flares areas globally, and to enable the performance of the future Landsat 10 to be established in a way that it will be sensitive enough to image the Earth at night, thus performing as Nightsat during the night.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1452
Permanent link to this record
 

 
Author (up) Li, X.; Levin, N.; Xie, J.; Li, D.
Title Monitoring hourly night-time light by an unmanned aerial vehicle and its implications to satellite remote sensing Type Journal Article
Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 247 Issue Pages in press
Keywords Remote Sensing; Skyglow; Instrumentation
Abstract Satellite-observed night-time light in urban areas has been widely used as an indicator for socioeconomic development and light pollution. Up to present, the diurnal dynamics of city light during the night, which are important to understand the nature of human activity and the underlying variables explaining night-time brightness, have hardly been investigated by remote sensing techniques due to limitation of the revisit time and spatial resolution of available satellites. In this study, we employed a consumer-grade unmanned aerial vehicle (UAV) to monitor city light in a study area located in Wuhan City, China, from 8:08 PM, April 15, 2019 to 5:08 AM, April 16, 2019, with an hourly temporal resolution. By using three ground-based Sky Quality Meters (SQMs), we found that the UAV-recorded light brightness was consistent with the ground luminous intensity measured by the SQMs in both the spatial (R2 = 0.72) and temporal dimensions (R2 > 0.94), and that the average city light brightness was consistent with the sky brightness in the temporal dimension (R2 = 0.98), indicating that UAV images can reliably monitor the city's night-time brightness. The temporal analysis showed that different locations had different patterns of temporal changes in their night-time brightness, implying that inter-calibration of two kinds of satellite images with different overpass times would be a challenge. Combining an urban function map of 18 classes and the hourly UAV images, we found that urban functions differed in their temporal light dynamics. For example, the outdoor sports field lost 97.28% of its measured brightness between 8: 08 PM – 4:05 AM, while an administrative building only lost 4.56%, and the entire study area lost 61.86% of its total brightness. Within our study area, the period between 9:06 PM and 10:05 PM was the period with largest amount of light loss. The spectral analysis we conducted showed that city light colors were different in some urban functions, with the major road being the reddest region at 8:08 PM and becoming even redder at 4:05 AM. This preliminary study indicates that UAVs are a good tool to investigate city light at night, and that city light is very complex in both of the temporal and spatial dimensions, requiring comprehensive investigation using more advanced UAV techniques, and emphasizing the need for geostationary platforms for night-time light sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3014
Permanent link to this record