|   | 
Details
   web
Records
Author (up) Rabaza, O.; Aznar-Dols, F.; Mercado-Vargas, M.; Espin-Estrella, A.
Title A new method of measuring and monitoring light pollution in the night sky Type Journal Article
Year 2014 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology
Volume 46 Issue 1 Pages 5-19
Keywords Instrumentation; all-sky; measurement; modeling; monitoring
Abstract This paper describes a method of measuring and monitoring light pollution in the night sky. This method is capable of instantly quantifying the levels of artificial radiance and monochromatic luminance of the sky glow by means of a system that includes an all-sky camera as well as several interference filters. The calibration is done with an integrating sphere where the measurement pattern used is obtained from the light reflected from the inner wall of the sphere which comes from radiation emitted by a calibration lamp with a known luminous flux. The inner wall of this sphere is a Lambertian surface, which ensures that the light reflected or falling on it is uniformly dispersed in all directions (i.e. the surface luminance is isotropic).
Address Ovidio Rabaza Castillo, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingenieria Civil, Campus de Fuentenueva, Universidad de Granada, 18071, Granada, Spain E-mail: ovidio(at)ugr.es
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1347
Permanent link to this record
 

 
Author (up) Rayleigh, L.
Title A Photoelectric Method of Measuring the Light of the Night Sky with Studies of the Course of Variation through the Night Type Journal Article
Year 1929 Publication Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences Abbreviated Journal Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
Volume 124 Issue 794 Pages 395-408
Keywords Instrumentation; Night Sky Brightness
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1364-5021 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2396
Permanent link to this record
 

 
Author (up) Ribas, S. J.; Aubé, M.; Bará, S.; Bouroussis, C.; Canal-Domingo, R.; Espey, B.; Hänel, A.; Jechow, A.; Kolláth, Z.; Marti, G.; Massana, P.; Schmidt, W.; Spoelstra, H.; Wuchterl, G.; Zamorano, J.; Kyba, C.
Title Report of the 2016 STARS4ALL/LoNNe Intercomparison Campaign Type Report
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Skyglow; Instrumentation
Abstract The 2016 LoNNe (Loss of the Night Network) intercomparison campaign is the fourth of four campaigns planned during EU COST Action ES1204. The first campaign took place in 2013 in Lastovo, Croatia, the second in Madrid, Spain (Bará et al 2015), the third in Torniella and Florence, Italy (Kyba et al 2015a). The 2016 campaign took place at the Parc Astronòmic Montsec (PAM). The campaign continued the strategy of taking measurements at multiple sites, this year with a main fixed site and then excursions to other sites. The goals of the campaigns included:

● Understanding the difference between extinction measurements made by DSLR photometry and classical astronomical (telescope) photometry, and also understanding the relation between extinction and sky brightness at these two sites.

● Examining the difference in radiance measured with the mosaic technique of the US National Parks Service camera compared to all-sky fisheye imagery

● Examining the relationships between all-sky and zenith radiance reported by different instruments

● Quantifying the sky brightnes at the sites, including full zenith spectral radiance at selected locations

● Measuring the systematic uncertainty on handheld SQM observations due to unit-to-unit differences
Address
Corporate Author Thesis
Publisher GFZ Data Services Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3057
Permanent link to this record
 

 
Author (up) Sánchez de Miguel, A.; Bará, S.; Aubé, M.; Cardiel, N.; Tapia, C.E.; Zamorano, J.; Gaston, K.J.
Title Evaluating Human Photoreceptoral Inputs from Night-Time Lights Using RGB Imaging Photometry Type Journal Article
Year 2019 Publication Journal of Imaging Abbreviated Journal J. Imaging
Volume 5 Issue 4 Pages 49
Keywords Human Health; Remote Sensing; Instrumentation
Abstract Night-time lights interact with human physiology through different pathways starting at the retinal layers of the eye; from the signals provided by the rods; the S-, L- and M-cones; and the intrinsically photosensitive retinal ganglion cells (ipRGC). These individual photic channels combine in complex ways to modulate important physiological processes, among them the daily entrainment of the neural master oscillator that regulates circadian rhythms. Evaluating the relative excitation of each type of photoreceptor generally requires full knowledge of the spectral power distribution of the incoming light, information that is not easily available in many practical applications. One such instance is wide area sensing of public outdoor lighting; present-day radiometers onboard Earth-orbiting platforms with sufficient nighttime sensitivity are generally panchromatic and lack the required spectral discrimination capacity. In this paper, we show that RGB imagery acquired with off-the-shelf digital single-lens reflex cameras (DSLR) can be a useful tool to evaluate, with reasonable accuracy and high angular resolution, the photoreceptoral inputs associated with a wide range of lamp technologies. The method is based on linear regressions of these inputs against optimum combinations of the associated R, G, and B signals, built for a large set of artificial light sources by means of synthetic photometry. Given the widespread use of RGB imaging devices, this approach is expected to facilitate the monitoring of the physiological effects of light pollution, from ground and space alike, using standard imaging technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2313-433X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2294
Permanent link to this record
 

 
Author (up) Sánchez de Miguel, A.; Kyba, C.C.M.; Aubé, M.; Zamorano, J.; Cardiel, N.; Tapia, C.; Bennie, J.; Gaston, K.J.
Title Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms Type Journal Article
Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 224 Issue Pages 92-103
Keywords Remote Sensing; Instrumentation
Abstract Sensors on remote sensing satellites have provided useful tools for evaluation of the environmental impacts of nighttime artificial light pollution. However, due to their panchromatic nature, the data available from these sensors (VIIRS/DNB and DMSP/OLS) has a limited capacity accurately to assess this impact. Moreover, in some cases, recorded variations can be misleading. Until new satellite platforms and sensors are available, only nighttime images taken with DSLR cameras from the International Space Station (ISS), airplanes, balloons or other such platforms can provide the required information. Here we describe a theoretical approach using colour-colour diagrams to analyse images taken by astronauts on the ISS to estimate spatial and temporal variation in the spectrum of artificial lighting emissions. We then evaluate how this information can be used to determine effects on some key environmental indices: photopic vision, the Melatonin Suppression Index, the Star Light Index, the Induced Photosynthesis Index, production of NO2-NO radicals, energy efficiency and CO2 emissions, and Correlated Colour Temperature. Finally, we use the city of Milan as a worked example of the approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2189
Permanent link to this record