toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, H.; Xiong, X.; Geng, X.; Twedt, K. url  doi
openurl 
  Title Stray-light correction and prediction for Suomi National Polar-orbiting Partnership visible infrared imaging radiometer suite day-night band Type Journal Article
  Year 2019 Publication Journal of Applied Remote Sensing Abbreviated Journal J. Appl. Rem. Sens.  
  Volume 13 Issue 02 Pages 1  
  Keywords Instrumentation; Remote Sensing  
  Abstract The Suomi National Polar-orbiting Partnership visible infrared imaging radiometer suite instrument has successfully operated since its launch in October 2011. Stray-light contamination is much larger than prelaunch expectations, and it causes a major decrease in quality of the day-night band night imagery when the spacecraft is crossing the Northern or Southern day-night terminators. The stray light can be operationally estimated using Earth-view data that are measured over dark surfaces during the new moon each month. More than 7 years of nighttime images have demonstrated that the stray-light contamination mainly depends on the Earth–Sun–spacecraft geometry, so its intensity is generally estimated as a function of the satellite zenith angle. In practice, stray-light contamination is also detector- and scan-angle-dependent. Previous methods of stray-light prediction generally rely on using the known stray light level from the same month in the previous year, when the Earth–Sun–spacecraft geometries had been similar. We propose a new method to predict stray-light contamination. The Kullback–Leibler similarity metric is used as a method to combine data from multiple years with appropriate adjustments for degradation and geometry drifts in order to calculate a fused stray-light contamination correction. The new method provides an improved prediction of stray-light contamination compared to the existing methods and may be considered for future use in the real-time NASA Level-1B products.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 1931-3195 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2517  
Permanent link to this record
 

 
Author Kyba, C.C.M.; Holker, F. url  doi
openurl 
  Title Window illumination should be expected to poorly correlate with satellite brightness measurements Type Journal Article
  Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 29 Issue 1 Pages 87-8  
  Keywords Commentary; Instrumentation; Human Health  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22217106 Approved no  
  Call Number GFZ @ kyba @ Serial 2533  
Permanent link to this record
 

 
Author Schwarting, T., McIntire, J., Oudrari, H., & Xiong, X url  doi
openurl 
  Title JPSS-1/NOAA-20 VIIRS Day-Night Band Prelaunch Radiometric Calibration and Performance Type Journal Article
  Year 2019 Publication IEEE Transactions on Geoscience and Remote Sensing Abbreviated Journal  
  Volume Issue Pages 1-13  
  Keywords Instrumentation  
  Abstract The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the first Joint Polar-Orbiting Satellite System series 1 (JPSS-1) has a panchromatic, three gain stage, day-night band (DNB) capable of imaging the Earth under illumination conditions ranging from reflected moonlight to daytime scenes. The DNB has four charged-coupled devices (CCDs) with 32 different modes of time-delay integration and subpixel aggregation to achieve high SNR in low light conditions while maintaining roughly constant spatial resolution across scan. During the prelaunch testing phase, these 32 different aggregation modes are separately calibrated over a large dynamic range (covering seven orders of magnitude) through a series of radiometric tests designed to generate initial calibration coefficients for the sensor data record (SDR) operational algorithm, assess radiometric performance, and determine compliance with the sensor design requirements. Early in the environmental testing at the Raytheon El Segundo facility, nonlinear behavior was discovered in some DNB edge of scan aggregation modes at low signal levels. In response to this nonlinearity, the test program was altered to characterize the radiometric performance both in the baseline configuration and with a modified aggregation scheme that eliminates the modes used at the end of scan, replacing them with an unaffected adjacent mode and trading off spatial resolution for improved linearity. Presented in this paper is the radiometric performance under both sensor configurations including dynamic range, sensitivity, radiometric uncertainty, and nonlinearity along with a discussion of the potential impact to DNB on-orbit calibration and SDR performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2541  
Permanent link to this record
 

 
Author Li, X.; Ma, R.; Zhang, Q.; Li, D.; Liu, S.; He, T.; Zhao, L. url  doi
openurl 
  Title Anisotropic characteristic of artificial light at night – Systematic investigation with VIIRS DNB multi-temporal observations Type Journal Article
  Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 233 Issue Pages 111357  
  Keywords Remote Sensing; Instrumentation  
  Abstract The released VIIRS DNB nightly images, also known as VIIRS DNB daily nighttime images, provide rich information for time series analysis of global socioeconomic dynamics. Anisotropic characteristic is a possible factor that influences the VIIRS DNB radiance at night and its time series analysis. This study aims to investigate the relationship between viewing angles and VIIRS DNB radiance of Suomi NPP satellite in urban areas. First, twenty-nine points were selected globally to explore the angle variation of Suomi NPP satellite views at night. We found that the variation of the satellite viewing zenith angle (VZA) is consistent (e.g. between 0° and 70°) since the range of VZA is fixed depending on the sensor design, and the range of viewing azimuth angle (VAA) increases with the increase of latitude. Second, thirty points in cities of Beijing, Houston, Los Angeles, Moscow, Quito and Sydney, were used to investigate the angle-radiance relationship. We proposed a zenith-radiance quadratic (ZRQ) model and a zenith-azimuth-radiance binary quadratic (ZARBQ) model to quantify the relationship between satellite viewing angles and artificial light radiance, which has been corrected by removing the moonlight and atmospheric impact from VIIRS DNB radiance products. For all the thirty points, the ZRQ and ZARBQ analysis have averaged R2 of 0.50 and 0.53, respectively, which indicates that the viewing angles are important factors influencing the variation of the artificial light radiance, but extending zenith to zenith-azimuth does not much better explain the variation of the observed artificial light. Importantly, based on the data analysis, we can make the hypothesis that building height may affect the relationship between VZA and artificial light, and cold and hot spot effects are clearly found in tall building areas. These findings are potentially useful to reconstruct more stable time series VIIRS DNB images for socioeconomic applications by removing the angular effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2621  
Permanent link to this record
 

 
Author Burggraaff, O., Schmidt, N., Zamorano, J., Pauly, K., Pascual, S., Tapia, C., Spyrakos, E., & Snik, F. url  openurl
  Title Standardized spectral and radiometric calibration of consumer cameras Type Journal Article
  Year 2019 Publication Optical Express Abbreviated Journal  
  Volume 27 Issue 14 Pages 19075-19101  
  Keywords Instrumentation  
  Abstract Consumer cameras, particularly onboard smartphones and UAVs, are now commonly used as scientific instruments. However, their data processing pipelines are not optimized for quantitative radiometry and their calibration is more complex than that of scientific cameras. The lack of a standardized calibration methodology limits the interoperability between devices and, in the ever-changing market, ultimately the lifespan of projects using them. We present a standardized methodology and database (SPECTACLE) for spectral and radiometric calibrations of consumer cameras, including linearity, bias variations, read-out noise, dark current, ISO speed and gain, flat-field, and RGB spectral response. This includes golden standard ground-truth methods and do-it-yourself methods suitable for non-experts. Applying this methodology to seven popular cameras, we found high linearity in RAW but not JPEG data, inter-pixel gain variations >400% correlated with large-scale bias and read-out noise patterns, non-trivial ISO speed normalization functions, flat-field correction factors varying by up to 2.79 over the field of view, and both similarities and differences in spectral response. Moreover, these results differed wildly between camera models, highlighting the importance of standardization and a centralized database.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition (up)  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2652  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: