|   | 
Details
   web
Records
Author Cinzano, P.; Falchi, F.
Title A portable wide-field instrument for mapping night sky brightness automatically Type Journal Article
Year 2003 Publication Memorie della Società Astronomica Italiana Abbreviated Journal Mem. S.A. It.
Volume 74 Issue 2 Pages 458-459
Keywords Instrumentation; all-sky; photometry; sky brightness
Abstract We present a portable automatic instrument for monitoring night sky brightness and atmospherical transparency in astronomical photometrical bands. Main requirements were: fast and automatic coverage of the entire sky, lightness, transportability and quick set-up in order to take measurements from more sites in the same night, easily available commercial components and software to be reproduced by any interested institution, included amateurs astronomers groups.
Address Istituto di Scienza e Tecnologia dell’Inquinamento Luminoso, Thiene, Italy
Corporate Author Thesis
Publisher Società Astronomica Italiana Place of Publication Editor (down)
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1824-016X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2243
Permanent link to this record
 

 
Author Bará, S.; Tapia, C.; Zamorano, J.
Title Absolute Radiometric Calibration of TESS-W and SQM Night Sky Brightness Sensors Type Journal Article
Year 2019 Publication Sensors Abbreviated Journal Sensors
Volume 19 Issue 6 Pages 1336
Keywords Instrumentation; calibration; SQM; TESS; photometer; sky brightness
Abstract We develop a general optical model and describe the absolute radiometric calibration of the readings provided by two widely-used night sky brightness sensors based on irradiance-to-frequency conversion. The calibration involves the precise determination of the overall spectral sensitivity of the devices and also the constant G relating the output frequency of the light-to-frequency converter chip to the actual band-weighted and field-of-view averaged spectral radiance incident on the detector (brightness). From these parameters, we show how to define a rigorous astronomical absolute photometric system in which the sensor measurements can be reported in units of magnitudes per square arcsecond with precise physical meaning.
Address Departmento Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher MDPI Place of Publication Editor (down)
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2263
Permanent link to this record
 

 
Author Sánchez de Miguel, A.; Bará, S.; Aubé, M.; Cardiel, N.; Tapia, C.E.; Zamorano, J.; Gaston, K.J.
Title Evaluating Human Photoreceptoral Inputs from Night-Time Lights Using RGB Imaging Photometry Type Journal Article
Year 2019 Publication Journal of Imaging Abbreviated Journal J. Imaging
Volume 5 Issue 4 Pages 49
Keywords Human Health; Remote Sensing; Instrumentation
Abstract Night-time lights interact with human physiology through different pathways starting at the retinal layers of the eye; from the signals provided by the rods; the S-, L- and M-cones; and the intrinsically photosensitive retinal ganglion cells (ipRGC). These individual photic channels combine in complex ways to modulate important physiological processes, among them the daily entrainment of the neural master oscillator that regulates circadian rhythms. Evaluating the relative excitation of each type of photoreceptor generally requires full knowledge of the spectral power distribution of the incoming light, information that is not easily available in many practical applications. One such instance is wide area sensing of public outdoor lighting; present-day radiometers onboard Earth-orbiting platforms with sufficient nighttime sensitivity are generally panchromatic and lack the required spectral discrimination capacity. In this paper, we show that RGB imagery acquired with off-the-shelf digital single-lens reflex cameras (DSLR) can be a useful tool to evaluate, with reasonable accuracy and high angular resolution, the photoreceptoral inputs associated with a wide range of lamp technologies. The method is based on linear regressions of these inputs against optimum combinations of the associated R, G, and B signals, built for a large set of artificial light sources by means of synthetic photometry. Given the widespread use of RGB imaging devices, this approach is expected to facilitate the monitoring of the physiological effects of light pollution, from ground and space alike, using standard imaging technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2313-433X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2294
Permanent link to this record
 

 
Author Windle, A. E., Hooley, D. S., & Johnston, D. W.
Title Robotic Vehicles Enable High-Resolution Light Pollution Sampling of Sea Turtle Nesting Beaches Type Journal Article
Year 2018 Publication Frontiers in Marine Science Abbreviated Journal
Volume 5 Issue 493 Pages
Keywords Instrumentation; Animals; Skyglow
Abstract Nesting sea turtles appear to avoid brightly lit beaches and often turn back to sea prematurely when exposed to artificial light. Observations and experiments have noted that nesting turtles prefer darker areas where buildings and high dunes act as light barriers. As a result, sea turtles often nest on darker beaches, creating spatial concentrations of nests. Artificial nighttime light, or light pollution, has been quantified using a variety of methods. However, it has proven challenging to make accurate measurements of ambient light at fine scales and on smaller nesting beaches. Additionally, light has traditionally been measured from stationary tripods perpendicular to beach vegetation, disregarding the point of view of a nesting sea turtle. In the present study, nighttime ambient light conditions were assessed on three beaches in central North Carolina: a developed coastline of a barrier island, a nearby State Park on the same barrier island comprised of protected and undeveloped land, and a completely uninhabited wilderness on an adjacent barrier island in the Cape Lookout National Seashore. Using an autonomous terrestrial rover, high resolution light measurements (mag/arcsec2) were collected every minute with two ambient light sensors along transects on each beach. Spatial comparisons between ambient light and nesting density at and between these locations reveal that highest densities of nests occur in regions with lowest light levels, supporting the hypothesis that light pollution from coastal development may influence turtle nesting distribution. These results can be used to support ongoing management strategies to mitigate this pressing conservation issue.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2315
Permanent link to this record
 

 
Author Jechow, A.; Kyba, C.; Hölker, F.
Title Beyond All-Sky: Assessing Ecological Light Pollution Using Multi-Spectral Full-Sphere Fisheye Lens Imaging Type Journal Article
Year 2019 Publication Journal of Imaging Abbreviated Journal J. Imaging
Volume 5 Issue 4 Pages 46
Keywords Instrumentation; Skyglow
Abstract Artificial light at night is a novel anthropogenic stressor. The resulting ecological light pollution affects a wide breadth of biological systems on many spatio-temporal scales, from individual organisms to communities and ecosystems. However, a widely-applicable measurement method for nocturnal light providing spatially resolved full-spectrum radiance over the full solid angle is still missing. Here, we explain the first step to fill this gap, by using a commercial digital camera with a fisheye lens to acquire vertical plane multi-spectral (RGB) images covering the full solid angle. We explain the technical and practical procedure and software to process luminance and correlated color temperature maps and derive illuminance. We discuss advantages and limitations and present data from different night-time lighting situations. The method provides a comprehensive way to characterize nocturnal light in the context of ecological light pollution. It is affordable, fast, mobile, robust, and widely-applicable by non-experts for field work.
Address
Corporate Author Thesis
Publisher Place of Publication Editor (down)
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2313-433X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2327
Permanent link to this record