|   | 
Details
   web
Records
Author Fiorentin, P.; Boscaro, F.
Title A method for measuring the light output of video advertising reproduced by LED billboards Type Journal Article
Year 2019 Publication Measurement Abbreviated Journal Measurement
Volume 138 Issue Pages (down) 25-33
Keywords Lighting; Energy; Instrumentation; Planning; Light-emitting diode displays; Photometry; Video recording; Image analysis; CCD image sensors; Luminance; Glare
Abstract Improving knowledge of the light output of digital billboards is important to better assess their effect on driver distraction when they are installed along roads. In this work the emission of an LED based billboard is measured when playing advertising video-clips. In particular the average and the maximum values of the luminance are evaluated. The same video-clips are also analyzed when shown on an LCD monitor, aiming at separating the variability of the videos and of the playing device. The results allow to evaluate an utilization factor of the billboard: the videos have an average luminance around 11% and a peak luminance of 35% of the maximum luminance obtainable from the billboard. The power consumption of the billboard is measured, aside the photometric analysis. The luminance of the device are found linearly dependent on both the power and the effective current absorbed by the device from the grid, with a discrepancy within 6%. It could be a useful information for billboard manufacturers to qualify their product when they do not own photometric instruments.
Address Department of Industrial Engineering, University of Padova, Padova, Italy; pietro.fiorentin(at)unipd.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0263-2241 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2214
Permanent link to this record
 

 
Author Zoogman, P.; Liu, X.; Suleiman, R.M.; Pennington, W.F.; Flittner, D.E.; Al-Saadi, J.A.; Hilton, B.B.; Nicks, D.K.; Newchurch, M.J.; Carr, J.L.; Janz, S.J.; Andraschko, M.R.; Arola, A.; Baker, B.D.; Canova, B.P.; Chan Miller, C.; Cohen, R.C.; Davis, J.E.; Dussault, M.E.; Edwards, D.P.; Fishman, J.; Ghulam, A.; González Abad, G.; Grutter, M.; Herman, J.R.; Houck, J.; Jacob, D.J.; Joiner, J.; Kerridge, B.J.; Kim, J.; Krotkov, N.A.; Lamsal, L.; Li, C.; Lindfors, A.; Martin, R.V.; McElroy, C.T.; McLinden, C.; Natraj, V.; Neil, D.O.; Nowlan, C.R.; OSullivan, E.J.; Palmer, P.I.; Pierce, R.B.; Pippin, M.R.; Saiz-Lopez, A.; Spurr, R.J.D.; Szykman, J.J.; Torres, O.; Veefkind, J.P.; Veihelmann, B.; Wang, H.; Wang, J.; Chance, K.
Title Tropospheric emissions: Monitoring of pollution (TEMPO) Type Journal Article
Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 186 Issue Pages (down) 17-39
Keywords Instrumentation, Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1498
Permanent link to this record
 

 
Author Alamús, R.; Bará, S.; Corbera, J.; Escofet, J.; Palà , V.; Pipia, L.; Tardà, A.
Title Ground-based hyperspectral analysis of the urban nightscape Type Journal Article
Year 2017 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing
Volume 124 Issue Pages (down) 16-26
Keywords Instrumentation; Remote Sensing
Abstract Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0924-2716 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1613
Permanent link to this record
 

 
Author Choi, T.; Shao, X.; Cao, C.; Weng, F.
Title Radiometric Stability Monitoring of the Suomi NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Reflective Solar Bands Using the Moon Type Journal Article
Year 2016 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 8 Issue 1 Pages (down) 15
Keywords Instrumentation
Abstract The Suomi NPP (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) performs the scheduled lunar roll maneuver on a monthly basis. The lunar calibration coefficients and lunar F-factor are calculated by taking the ratio of the lunar observed radiance to the simulated radiance from the Miller and Turner (MT) lunar model. The lunar F-factor is also validated against that derived from the VIIRS Solar Diffuser (SD). The MT model-based lunar F-factors in general agree with SD F-factors. The Lunar Band Ratio (LBR) is also derived from two channel lunar radiances and is implemented in the National Oceanic and Atmospheric Administration (NOAA) Integrated Calibration and Validation System (ICVS) to monitor the VIIRS long-term radiometric performance. The lunar radiances at pixels are summed for each of the VIIRS Reflective Solar Bands (RSBs) and normalized by the reference band M11 which has the most stable SD-based calibration coefficient. LBRs agree with the SD based F-factor ratios within one percent. Based on analysis with these two independent lunar calibration methods, SD-based and LBR-based calibrations show a lifetime consistency. Thus, it is recommended that LBR be used for both VIIRS radiometric calibration and lifetime stability monitoring.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1384
Permanent link to this record
 

 
Author Jechow, A.; Kolláth, Z.; Lerner, A.; Hänel, A.; Shashar, N.; Hölker, F.; Kyba, C.C.M.
Title Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat–A Proof of Concept Type Journal Article
Year 2017 Publication International Journal of Sustainable Lighting Abbreviated Journal
Volume 19 Issue 1 Pages (down) 15-25
Keywords Skyglow; Instrumentation
Abstract Near all-sky imaging photometry was performed from a boat on the Gulf of Aqaba to measure the night sky brightness in a coastal environment. The boat was not anchored, and therefore drifted and rocked. The camera was mounted on a tripod without any inertia/motion stabilization. A commercial digital single lens reflex (DSLR) camera and fisheye lens were used with ISO setting of 6400, with the exposure time varied between 0.5 s and 5 s. We find that despite movement of the vessel the measurements produce quantitatively comparable results apart from saturation effects. We discuss the potential and limitations of this method for mapping light pollution in marine and freshwater systems. This work represents the proof of concept that all-sky photometry with a commercial DSLR camera is a viable tool to determine light pollution in an ecological context from a moving boat.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2151
Permanent link to this record