|   | 
Details
   web
Records
Author Kyba, C.C.M.; Holker, F.
Title Window illumination should be expected to poorly correlate with satellite brightness measurements Type Journal Article
Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 29 Issue 1 Pages 87-8
Keywords Commentary; Instrumentation; Human Health
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:22217106 Approved no
Call Number GFZ @ kyba @ Serial 2533
Permanent link to this record
 

 
Author Hampf, D.; Rowell, G.; Wild, N.; Sudholz, T.; Horns, D.; Tluczykont, M.
Title Measurement of night sky brightness in southern Australia Type Journal Article
Year 2011 Publication Advances in Space Research Abbreviated Journal Advances in Space Research
Volume 48 Issue 6 Pages 1017-1025
Keywords Observatories and site testing; Airglow and aurorae; Photometric, polarimetric, and spectroscopic instrumentation
Abstract Night sky brightness is a major source of noise both for Cherenkov telescopes as well as for wide-angle Cherenkov detectors. Therefore, it is important to know the level of night sky brightness at potential sites for future experiments.

The measurements of night sky brightness presented here were carried out at Fowler’s Gap, a research station in New South Wales, Australia, which is a potential site for the proposed TenTen Cherenkov telescope system and the planned wide-angle Cherenkov detector system HiSCORE.

A portable instrument was developed and measurements of the night sky brightness were taken in February and August 2010. Brightness levels were measured for a range of different sky regions and in various spectral bands.

The night sky brightness in the relevant wavelength regime for photomultipliers was found to be at the same level as measured in similar campaigns at the established Cherenkov telescope sites of Khomas, Namibia, and at La Palma. The brightness of dark regions in the sky is about 2 × 1012 photons/(s sr m2) between 300 nm and 650 nm, and up to four times brighter in bright regions of the sky towards the galactic plane. The brightness in V band is 21.6 magnitudes per arcsec2 in the dark regions. All brightness levels are averaged over the field of view of the instrument of about 1.3 × 10−3 sr.

The spectrum of the night sky brightness was found to be dominated by longer wavelengths, which allows to apply filters to separate the night sky brightness from the blue Cherenkov light. The possible gain in the signal to noise ratio was found to be up to 1.2, assuming an ideal low-pass filter.
Address Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0273-1177 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 189
Permanent link to this record
 

 
Author Fiorentin, P.; Boscaro, F.
Title A method for measuring the light output of video advertising reproduced by LED billboards Type Journal Article
Year 2019 Publication Measurement Abbreviated Journal Measurement
Volume 138 Issue Pages 25-33
Keywords Lighting; Energy; Instrumentation; Planning; Light-emitting diode displays; Photometry; Video recording; Image analysis; CCD image sensors; Luminance; Glare
Abstract Improving knowledge of the light output of digital billboards is important to better assess their effect on driver distraction when they are installed along roads. In this work the emission of an LED based billboard is measured when playing advertising video-clips. In particular the average and the maximum values of the luminance are evaluated. The same video-clips are also analyzed when shown on an LCD monitor, aiming at separating the variability of the videos and of the playing device. The results allow to evaluate an utilization factor of the billboard: the videos have an average luminance around 11% and a peak luminance of 35% of the maximum luminance obtainable from the billboard. The power consumption of the billboard is measured, aside the photometric analysis. The luminance of the device are found linearly dependent on both the power and the effective current absorbed by the device from the grid, with a discrepancy within 6%. It could be a useful information for billboard manufacturers to qualify their product when they do not own photometric instruments.
Address Department of Industrial Engineering, University of Padova, Padova, Italy; pietro.fiorentin(at)unipd.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0263-2241 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2214
Permanent link to this record
 

 
Author Pun, C.S.J.; So, C.W.
Title Night-sky brightness monitoring in Hong Kong: a city-wide light pollution assessment Type Journal Article
Year 2012 Publication Environmental Monitoring and Assessment Abbreviated Journal Environ Monit Assess
Volume 184 Issue 4 Pages 2537-2557
Keywords *Cities; Environmental Monitoring/instrumentation/*methods; *Environmental Pollution; Hong Kong; Humans; *Light
Abstract Results of the first comprehensive light pollution survey in Hong Kong are presented. The night-sky brightness was measured and monitored around the city using a portable light-sensing device called the Sky Quality Meter over a 15-month period beginning in March 2008. A total of 1,957 data sets were taken at 199 distinct locations, including urban and rural sites covering all 18 Administrative Districts of Hong Kong. The survey shows that the environmental light pollution problem in Hong Kong is severe-the urban night skies (sky brightness at 15.0 mag arcsec(- 2)) are on average ~ 100 times brighter than at the darkest rural sites (20.1 mag arcsec(- 2)), indicating that the high lighting densities in the densely populated residential and commercial areas lead to light pollution. In the worst polluted urban location studied, the night-sky at 13.2 mag arcsec(- 2) can be over 500 times brighter than the darkest sites in Hong Kong. The observed night-sky brightness is found to be affected by human factors such as land utilization and population density of the observation sites, together with meteorological and/or environmental factors. Moreover, earlier night skies (at 9:30 p.m. local time) are generally brighter than later time (at 11:30 p.m.), which can be attributed to some public and commercial lightings being turned off later at night. On the other hand, no concrete relationship between the observed sky brightness and air pollutant concentrations could be established with the limited survey sampling. Results from this survey will serve as an important database for the public to assess whether new rules and regulations are necessary to control the use of outdoor lightings in Hong Kong.
Address Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China. jcspun@hku.hk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0167-6369 ISBN Medium
Area Expedition Conference
Notes PMID:21713499 Approved no
Call Number IDA @ john @ Serial 258
Permanent link to this record
 

 
Author Li, X.; Li, D.; Xu, H.; Wu, C.
Title Intercalibration between DMSP/OLS and VIIRS night-time light images to evaluate city light dynamics of Syria’s major human settlement during Syrian Civil War Type Journal Article
Year 2017 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 38 Issue 21 Pages 5934-5951
Keywords Remote Sensing; Instrumentation; Society
Abstract Monthly composites of night-time light acquired from the Meteorological Satellite Program’s Operational Linescan System (DMSP/OLS) had been used to evaluate socio-economic dynamics and human rights during the Syrian Civil War, which started in March 2011. However, DMSP/OLS monthly composites are not available subsequent to February 2014, and the only available night-time light composites for that period were acquired from the Suomi National Polar-orbiting Partnership satellite’s Visible Infrared Imaging Radiometer Suite (Suomi NPP/VIIRS). This article proposes an intercalibration model to simulate DMSP/OLS composites from the VIIRS day-and-night band (DNB) composites, by using a power function for radiometric degradation and a Gaussian low pass filter for spatial degradation. The DMSP/OLS data and the simulated DMSP/OLS data were combined to estimate the city light dynamics in Syria’s major human settlement between March 2011 and January 2017. Our analysis shows that Syria’s major human settlement lost about 79% of its city light by January 2017, with Aleppo, Daraa, Deir ez-Zor, and Idlib provinces losing 89%, 90%, 96%, and 99% of their light, respectively, indicating that these four provinces were most affected by the war. We also found that the city light in Syria and 12 provinces rebounded from early 2016 to January 2017, possibly as a result of the peace negotiation signed in Geneva.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1873
Permanent link to this record