|   | 
Details
   web
Records
Author Kolláth, Z.; Cool, A.; Jechow, A.; Kolláth, K.; Száz, D.; Tong, K.P.
Title Introducing the Dark Sky Unit for multi-spectral measurement of the night sky quality with commercial digital cameras Type Journal Article
Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 253 Issue Pages 107162
Keywords Skyglow; Instrumentation; Measurement; light pollution; Radiometry
Abstract Multi-spectral imaging radiometry of the night sky provides essential information on light pollution (skyglow) and sky quality. However, due to the different spectral sensitivity of the devices used for light pollution measurement, the comparison of different surveys is not always trivial. In addition to the differences between measurement approaches, there is a strong variation in natural sky radiance due to the changes of airglow. Thus, especially at dark locations, the classical measurement methods (such as Sky Quality Meters) fail to provide consistent results. In this paper, we show how to make better use of the multi-spectral capabilities of commercial digital cameras and show their application for airglow analysis. We further recommend a novel sky quality metric the ”Dark Sky Unit”, based on an easily usable and SI traceable unit. This unit is a natural choice for consistent, digital camera-based measurements. We also present our camera system calibration methodology for use with the introduced metrics.
Address ELTE BDPK, Szombathely, Department of Physics, Hungary; zkollath(at)gmail.com
Corporate Author Thesis
Publisher Elsever Place of Publication Elsevier Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2998
Permanent link to this record
 

 
Author Fiorentin, P.; Bertolo, A.; Cavazzani, S.; Ortolani, S.
Title Calibration of digital compact cameras for sky quality measures Type Journal Article
Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume in press Issue Pages
Keywords Skyglow; Instrumentation
Abstract This work presents the possibility of using the extremely popular compact digital cameras of smartphones or action cameras to perform sky photometry. The newest generation of these devices allows to save raw images. They are not as good as digital single-lens reflex camera, in particular in terms of sensitivity, noise and pixel depth (10 bit versus 12 bit or more), but they have the advantage of being extremely widespread on the population and relatively cheap. These economical digital compact cameras work with an electronic shutter, it overcomes the consumption of mechanics and allows to gather images for long time. The work uses a simple calibration method to transfer raw data from the proprietary RGB color space to the standard CIE 1931 color space. It allows the measurement of sky luminance in cd m−2 with an expected uncertainty of about 20%. Furthermore, the colorimetric calibration allows to know the correlated color temperature of a portion of the sky, it can help the identification of the kind of polluting sources. Aiming at better clarifying the performances of calibrated digital compact cameras, a comparison with a calibrated DSLR camera is presented in outdoor situations showing a good agreement both for luminance and color temperature measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3063
Permanent link to this record
 

 
Author Gaydecki, P.
Title Automated moth flight analysis in the vicinity of artificial light Type Journal Article
Year 2018 Publication Bulletin of Entomological Research Abbreviated Journal Bull Entomol Res
Volume 109 Issue 1 Pages 127-140
Keywords Instrumentation; Animals
Abstract Instrumentation and software for the automated analysis of insect flight trajectories is described, intended for quantifying the behavioural dynamics of moths in the vicinity of artificial light. For its time, this moth imaging system was relatively advanced and revealed hitherto undocumented insights into moth flight behaviour. The illumination source comprised a 125 W mercury vapour light, operating in the visible and near ultraviolet wavelengths, mounted on top of a mobile telescopic mast at heights of 5 and 7.1 m, depending upon the experiment. Moths were imaged in early September, at night and in field conditions, using a ground level video camera with associated optics including a heated steering mirror, wide angle lens and an electronic image intensifier. Moth flight coordinates were recorded at a rate of 50 images per second (fields) and transferred to a computer using a light pen (the only non-automated operation in the processing sequence). Software extracted ground speed vectors and, by instantaneous subtraction of wind speed data supplied by fast-response anemometers, the airspeed vectors. Accumulated density profiles of the track data revealed that moths spend most of their time at a radius of between 40 and 50 cm from the source, and rarely fly directly above it, from close range. Furthermore, the proportion of insects caught by the trap as a proportion of the number influenced by the light (and within the field of view of the camera) was very low; of 1600 individual tracks recorded over five nights, a total of only 12 were caught. Although trap efficiency is strongly dependent on trap height, time of night, season, moonlight and weather, the data analysis confirmed that moths do not exhibit straightforward positive phototaxis. In general, trajectory patterns become more complex with reduced distance from the illumination, with higher recorded values of speeds and angular velocities. However, these characteristics are further qualified by the direction of travel of the insect; the highest accelerations tended to occur when the insect was at close range, but moving away from the source. Rather than manifesting a simple positive phototaxis, the trajectories were suggestive of disorientation. Based on the data and the complex behavioural response, mathematical models were developed that described ideal density distribution in calm air and light wind speed conditions. The models did not offer a physiological hypothesis regarding the behavioural changes, but rather were tools for quantification and prediction. Since the time that the system was developed, instrumentation, computers and software have advanced considerably, allowing much more to be achieved at a small fraction of the original cost. Nevertheless, the analytical tools remain useful for automated trajectory analysis of airborne insects.
Address School of Electrical and Electronic Engineering, University of Manchester,Manchester M13 9PL,UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0007-4853 ISBN Medium
Area Expedition Conference
Notes PMID:29745349 Approved no
Call Number GFZ @ kyba @ Serial 1895
Permanent link to this record
 

 
Author Elvey, C.T.; Roach, F.E.
Title A Photoelectric Study of the Light from the Night Sky Type Journal Article
Year 1937 Publication The Astrophysical Journal Abbreviated Journal ApJL
Volume 85 Issue Pages 213
Keywords Instrumentation; Sky Brightness
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0004-637X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2399
Permanent link to this record
 

 
Author Nievas Rosillo, M.
Title Absolute photometry and Night Sky Brightness with all-sky cameras Type Report
Year 2013 Publication e-prints Complutense Abbreviated Journal e-prints Complutense
Volume Issue 24626 Pages
Keywords Instrumentation; skyglow; measurement; modeling
Abstract All-sky cameras have proven to be powerful tools to continuously monitoring the sky in a wide range of fields in both Astrophysics and Meteorology. In this work, we have developed a complete software pipeline to analyze the night CCD images obtained with one of such systems. This let us to study typical parameters used in Astrophysics to characterize the night sky quality, such as the Sky Brightness, the Cloud Coverage and the Atmospheric Extinction, how they evolve over the time and their variability. Using our software, we analyzed a large set of data from AstMon-OT all-sky camera at Teide Observatory. Results from this work have been applied in the support to the spanish CTA site proposal at Izaña, Tenerife and are being discussed within the CTA consortium. A comparison with data from other devices that have been used in site characterization such as the IAC80 telescope is also presented. This comparison is used to validate the results of the analysis of all-sky images. Finally, we test our software with AstMon-UCM and DSLR cameras. Some general recommendations for the use of DSLR cameras are provided.
Address Departamento de Astrofí­sica y Ciencias de la Atmosfera, Universidad Complutense de Madrid, Madrid, Spain
Corporate Author Thesis Master's thesis
Publisher Place of Publication Madrid Editor
Language English Summary Language English Original Title
Series Editor Series Title e-prints Complutense Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1437
Permanent link to this record