|   | 
Details
   web
Records
Author Longcore, T.; Rich, C.; Mineau, P.; MacDonald, B.; Bert, D.G.; Sullivan, L.M.; Mutrie, E.; Gauthreaux, S.A.J.; Avery, M.L.; Crawford, R.L.; Manville, A.M. 2nd; Travis, E.R.; Drake, D.
Title An estimate of avian mortality at communication towers in the United States and Canada Type Journal Article
Year 2012 Publication PloS one Abbreviated Journal PLoS One
Volume 7 Issue 4 Pages e34025
Keywords Ecology; Accidents/*statistics & numerical data; Altitude; Animals; Birds/*injuries; Canada; Computer Communication Networks/*instrumentation; Conservation of Natural Resources/*statistics & numerical data; *Flight, Animal; *Mortality; Regression Analysis; United States
Abstract Avian mortality at communication towers in the continental United States and Canada is an issue of pressing conservation concern. Previous estimates of this mortality have been based on limited data and have not included Canada. We compiled a database of communication towers in the continental United States and Canada and estimated avian mortality by tower with a regression relating avian mortality to tower height. This equation was derived from 38 tower studies for which mortality data were available and corrected for sampling effort, search efficiency, and scavenging where appropriate. Although most studies document mortality at guyed towers with steady-burning lights, we accounted for lower mortality at towers without guy wires or steady-burning lights by adjusting estimates based on published studies. The resulting estimate of mortality at towers is 6.8 million birds per year in the United States and Canada. Bootstrapped subsampling indicated that the regression was robust to the choice of studies included and a comparison of multiple regression models showed that incorporating sampling, scavenging, and search efficiency adjustments improved model fit. Estimating total avian mortality is only a first step in developing an assessment of the biological significance of mortality at communication towers for individual species or groups of species. Nevertheless, our estimate can be used to evaluate this source of mortality, develop subsequent per-species mortality estimates, and motivate policy action.
Address The Urban Wildlands Group, Los Angeles, California, United States of America. longcore@urbanwildlands.org
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:22558082; PMCID:PMC3338802 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 475
Permanent link to this record
 

 
Author Tamir, R.; Lerner, A.; Haspel, C.; Dubinsky, Z.; Iluz, D.
Title The spectral and spatial distribution of light pollution in the waters of the northern Gulf of Aqaba (Eilat) Type Journal Article
Year 2017 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 7 Issue Pages 42329
Keywords Measurement; Instrumentation; Remote Sensing
Abstract The urbanization of the shores of the Gulf of Aqaba has exposed the marine environment there, including unique fringing coral reefs, to strong anthropogenic light sources. Here we present the first in situ measurements of artificial nighttime light under water in such an ecosystem, with irradiance measured in 12 wavelength bands, at 19 measurement stations spread over 44 square km, and at 30 depths down to 30-m depth. At 1-m depth, we find downwelling irradiance values that vary from 4.6 x 10(-4) muW cm(-2) nm(-1) 500 m from the city to 1 x 10(-6) muW cm(-2) nm(-1) in the center of the gulf (9.5 km from the city) in the yellow channel (589-nm wavelength) and from 1.3 x 10(-4) muW cm(-2 )nm(-1) to 4.3 x 10(-5) muW cm(-2) nm(-1) in the blue channel (443-nm wavelength). Down to 10-m depth, we find downwelling irradiance values that vary from 1 x 10(-6) muW cm(-2 )nm(-1) to 4.6 x 10(-4) muW cm(-2) nm(-1) in the yellow channel and from 2.6 x 10(-5) muW cm(-2) nm(-1) to 1.3 x 10(-4) muW cm(-2) nm(-1) in the blue channel, and we even detected a signal at 30-m depth. This irradiance could influence such biological processes as the tuning of circadian clocks, the synchronization of coral spawning, recruitment and competition, vertical migration of demersal plankton, feeding patterns, and prey/predator visual interactions.
Address School of Agriculture and Environmental Studies, Beit Berl College, Kfar Saba, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:28186138; PMCID:PMC5301253 Approved no
Call Number GFZ @ kyba @ Serial 1861
Permanent link to this record
 

 
Author Stone, J.E.; Phillips, A.J.K.; Ftouni, S.; Magee, M.; Howard, M.; Lockley, S.W.; Sletten, T.L.; Anderson, C.; Rajaratnam, S.M.W.; Postnova, S.
Title Generalizability of A Neural Network Model for Circadian Phase Prediction in Real-World Conditions Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue 1 Pages 11001
Keywords Human Health; Instrumentation
Abstract A neural network model was previously developed to predict melatonin rhythms accurately from blue light and skin temperature recordings in individuals on a fixed sleep schedule. This study aimed to test the generalizability of the model to other sleep schedules, including rotating shift work. Ambulatory wrist blue light irradiance and skin temperature data were collected in 16 healthy individuals on fixed and habitual sleep schedules, and 28 rotating shift workers. Artificial neural network models were trained to predict the circadian rhythm of (i) salivary melatonin on a fixed sleep schedule; (ii) urinary aMT6s on both fixed and habitual sleep schedules, including shift workers on a diurnal schedule; and (iii) urinary aMT6s in rotating shift workers on a night shift schedule. To determine predicted circadian phase, center of gravity of the fitted bimodal skewed baseline cosine curve was used for melatonin, and acrophase of the cosine curve for aMT6s. On a fixed sleep schedule, the model predicted melatonin phase to within +/- 1 hour in 67% and +/- 1.5 hours in 100% of participants, with mean absolute error of 41 +/- 32 minutes. On diurnal schedules, including shift workers, the model predicted aMT6s acrophase to within +/- 1 hour in 66% and +/- 2 hours in 87% of participants, with mean absolute error of 63 +/- 67 minutes. On night shift schedules, the model predicted aMT6s acrophase to within +/- 1 hour in 42% and +/- 2 hours in 53% of participants, with mean absolute error of 143 +/- 155 minutes. Prediction accuracy was similar when using either 1 (wrist) or 11 skin temperature sensor inputs. These findings demonstrate that the model can predict circadian timing to within +/- 2 hours for the vast majority of individuals on diurnal schedules, using blue light and a single temperature sensor. However, this approach did not generalize to night shift conditions.
Address School of Physics, University of Sydney, Sydney, New South Wales, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:31358781; PMCID:PMC6662750 Approved no
Call Number GFZ @ kyba @ Serial 2667
Permanent link to this record
 

 
Author Sanchez de Miguel, A.; Kyba, C.C.M.; Zamorano, J.; Gallego, J.; Gaston, K.J.
Title The nature of the diffuse light near cities detected in nighttime satellite imagery Type Journal Article
Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 10 Issue Pages 7829
Keywords Skyglow; Remote Sensing; Instrumentation
Abstract Diffuse glow has been observed around brightly lit cities in nighttime satellite imagery since at least the first publication of large scale maps in the late 1990s. In the literature, this has often been assumed to be an error related to the sensor, and referred to as “blooming”, presumably in relation to the effect that can occur when using a CCD to photograph a bright light source. Here we show that the effect seen on the DMSP/OLS, SNPP/VIIRS-DNB and ISS is not only instrumental, but in fact represents a real detection of light scattered by the atmosphere. Data from the Universidad Complutense Madrid sky brightness survey are compared to nighttime imagery from multiple sensors with differing spatial resolutions, and found to be strongly correlated. These results suggest that it should be possible for a future space-based imaging radiometer to monitor changes in the diffuse artificial skyglow of cities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2045-2322 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2909
Permanent link to this record
 

 
Author Miller, S.; Straka, W.; Mills, S.; Elvidge, C.; Lee, T.; Solbrig, J.; Walther, A.; Heidinger, A.; Weiss, S.
Title Illuminating the Capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band Type Journal Article
Year 2013 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 5 Issue 12 Pages 6717-6766
Keywords Instrumentation; satellite imagery; nighttime visible/near-infrared; moonlight
Abstract Daytime measurements of reflected sunlight in the visible spectrum have been a staple of Earth-viewing radiometers since the advent of the environmental satellite platform. At night, these same optical-spectrum sensors have traditionally been limited to thermal infrared emission, which contains relatively poor information content for many important weather and climate parameters. These deficiencies have limited our ability to characterize the full diurnal behavior and processes of parameters relevant to improved monitoring, understanding and modeling of weather and climate processes. Visible-spectrum light information does exist during the nighttime hours, originating from a wide variety of sources, but its detection requires specialized technology. Such measurements have existed, in a limited way, on USA Department of Defense satellites, but the Suomi National Polar-orbiting Partnership (NPP) satellite, which carries a new Day/Night Band (DNB) radiometer, offers the first quantitative measurements of nocturnal visible and near-infrared light. Here, we demonstrate the expanded potential for nocturnal low-light visible applications enabled by the DNB. Via a combination of terrestrial and extraterrestrial light sources, such observations are always available—expanding many current existing applications while enabling entirely new capabilities. These novel low-light measurements open doors to a wealth of new interdisciplinary research topics while lighting a pathway toward the optimized design of follow-on satellite based low light visible sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 468
Permanent link to this record