|   | 
Details
   web
Records
Author Tabaka, P.
Title Pilot Measurement of Illuminance in the Context of Light Pollution Performed with an Unmanned Aerial Vehicle Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 13 Pages 2124
Keywords Instrumentation; Remote Sensing
Abstract This article presents the methodology and results of pilot field illuminance measurements using an unmanned aerial vehicle (UAV). The main goal of the study was to quantify the luminous flux emitted in the upper hemisphere (toward the sky) based on obtained measurement data. The luminous flux emitted toward the sky is the source of undesirable light pollution. For test purposes, a height-adjustable mobile park lantern was constructed, at the top of which any type of luminaire can be installed. In the pilot measurements, two real opal sphere-type luminaires were considered. The lantern was situated in an open area located away from a large city agglomeration. To determine the unusable luminous flux, illuminance was measured, placing the necessary measuring equipment on board a UAV. The measurements were supplemented with the registration of illuminance on the ground upon which the lantern was installed. Based on these data, the useful luminous flux was calculated. The findings show that UAVs may be successfully used for the assessment of the influence of lighting on the light pollution effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3040
Permanent link to this record
 

 
Author Yao, Q.; Wang, H.; Uttley, J.; Zhuang, X.
Title Illuminance Reconstruction of Road Lighting in Urban Areas for Efficient and Healthy Lighting Performance Evaluation Type Journal Article
Year 2018 Publication Applied Sciences Abbreviated Journal Applied Sciences
Volume 8 Issue 9 Pages 1646
Keywords Instrumentation; Lighting; Planning
Abstract Big lighting data are required for evaluation of lighting performance and impacts on human beings, environment, and ecology for smart urban lighting. However, traditional approaches of measuring road lighting cannot achieve this aim. We propose a rule-of-thumb model approach based on some feature points to reconstruct road lighting in urban areas. We validated the reconstructed illuminance with both software simulated and real road lighting scenes, and the average error is between 6 and 19%. This precision is acceptable in practical applications. Using this approach, we reconstructed the illuminance of three real road lighting environments in a block and further estimated the mesopic luminance and melanopic illuminance performance. In the future, by virtue of Geographic Information System technology, the approach may provide big lighting data for evaluation and analysis, and help build smarter urban lighting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2076-3417 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2003
Permanent link to this record
 

 
Author Li, X.; Li, X.; Li, D.; He, X.; Jendryke, M.
Title A preliminary investigation of Luojia-1 night-time light imagery Type Journal Article
Year 2019 Publication Remote Sensing Letters Abbreviated Journal Remote Sensing Letters
Volume 10 Issue 6 Pages 526-535
Keywords Remote Sensing; Instrumentation
Abstract Launched on 2 June 2018, Luojia-1 satellite records night-time light imagery at 130 m resolution, which is higher than most of the existing night-time light images to date. This study evaluated radiometric and spatial properties of the Luojia-1 satellite imagery for cities of Los Angeles, Wuhan and Rome as well as the change detection capability for Zunyi city. For the radiometric property, the analysis shows that the Luojia-1 images correlate well with the radiance of the Visible Infrared Imaging Radiometer Suite (VIIRS)’s Day and Night Band (DNB), and that the Luojia-1 images have a wider range of radiance values, as well as higher radiance values (e.g., 40%–90% higher) than the VIIRS DNB images. Using wavelet decomposition and change detection analysis to evaluate spatial property and change detection capability, it was found that the Luojia-1 images provide abundant spatial detail information, with about 20%–54% energy of wavelet component of the images stored in 100–400 m resolutions, and they can help to track the electrification of new roads and buildings at a fine resolution. This study shows that the Luojia-1 images are an effective data source for analysing spatiotemporal distribution of night-time light and its associated socioeconomic attributes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2150-704X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2199
Permanent link to this record
 

 
Author Mills, S.; Miller, S.
Title VIIRS Day/Night Band--Correcting Striping and Nonuniformity over a Very Large Dynamic Range Type Journal Article
Year 2016 Publication Journal of Imaging Abbreviated Journal J. Imaging
Volume 2 Issue 1 Pages 9
Keywords Instrumentation
Abstract The Suomi National Polar-orbiting (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB) measures visible and near-infrared light extending over seven orders of magnitude of dynamic range. This makes radiometric calibration difficult. We have observed that DNB imagery has striping, banding and other nonuniformities—day or night. We identified the causes as stray light, nonlinearity, detector crosstalk, hysteresis and mirror-side variation. We found that these affect both Earth-view and calibration signals. These present an obstacle to interpretation by users of DNB products. Because of the nonlinearity we chose the histogram matching destriping technique which we found is successful for daytime, twilight and nighttime scenes. Because of the very large dynamic range of the DNB, we needed to add special processes to the histogram matching to destripe all scenes, especially imagery in the twilight regions where scene illumination changes rapidly over short distances. We show that destriping aids image analysts, and makes it possible for advanced automated cloud typing algorithms. Manual or automatic identification of other features, including polar ice and gravity waves in the upper atmosphere are also discussed. In consideration of the large volume of data produced 24 h a day by the VIIRS DNB, we present methods for reducing processing time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2313-433X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1400
Permanent link to this record
 

 
Author Sánchez de Miguel, A.; Bará, S.; Aubé, M.; Cardiel, N.; Tapia, C.E.; Zamorano, J.; Gaston, K.J.
Title Evaluating Human Photoreceptoral Inputs from Night-Time Lights Using RGB Imaging Photometry Type Journal Article
Year 2019 Publication Journal of Imaging Abbreviated Journal J. Imaging
Volume 5 Issue 4 Pages 49
Keywords Human Health; Remote Sensing; Instrumentation
Abstract Night-time lights interact with human physiology through different pathways starting at the retinal layers of the eye; from the signals provided by the rods; the S-, L- and M-cones; and the intrinsically photosensitive retinal ganglion cells (ipRGC). These individual photic channels combine in complex ways to modulate important physiological processes, among them the daily entrainment of the neural master oscillator that regulates circadian rhythms. Evaluating the relative excitation of each type of photoreceptor generally requires full knowledge of the spectral power distribution of the incoming light, information that is not easily available in many practical applications. One such instance is wide area sensing of public outdoor lighting; present-day radiometers onboard Earth-orbiting platforms with sufficient nighttime sensitivity are generally panchromatic and lack the required spectral discrimination capacity. In this paper, we show that RGB imagery acquired with off-the-shelf digital single-lens reflex cameras (DSLR) can be a useful tool to evaluate, with reasonable accuracy and high angular resolution, the photoreceptoral inputs associated with a wide range of lamp technologies. The method is based on linear regressions of these inputs against optimum combinations of the associated R, G, and B signals, built for a large set of artificial light sources by means of synthetic photometry. Given the widespread use of RGB imaging devices, this approach is expected to facilitate the monitoring of the physiological effects of light pollution, from ground and space alike, using standard imaging technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 2313-433X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2294
Permanent link to this record