|   | 
Details
   web
Records
Author Wilson, T., & Xiong, X.
Title Intercomparison of the SNPP and NOAA-20 VIIRS DNB High-Gain Stage Using Observations of Bright Stars Type Journal Article
Year 2020 Publication IEEE Transactions on Geoscience and Remote Sensing Abbreviated Journal
Volume Issue Pages 1-8
Keywords Remote Sensing; Instrumentation
Abstract The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi-NPP (SNPP) and NOAA-20 (N20) spacecrafts is a multispectral Earth-observing instrument with bands covering wavelengths from visible to long-wave infrared. Among these bands is a panchromatic day/night band (DNB) with a broad spectral response ranging from 500 to 900 nm, and a high dynamic range spanning over seven orders of magnitude, allowing for observations to take place during both daytime and nighttime. The DNB operates at three gain levels, with low- and mid-gain stages and two high-gain stages (HGSs). The HGS is capable of detecting dim city lights during Earth-view observations at night as well as bright stars through the instrument space-view port. Since SNPP and N20 are at opposite points of the same orbit, each VIIRS instrument is able to observe the same stars with the DNB in successive orbits. This will allow us to make a direct comparison of the relative calibration of each instrument using stars over a range of spectral classes. In this article, we develop methodology for accurately identifying target stars in order to make proper comparisons between the DNB HGS of each instrument. We then take observations from multiple stars in order to compute the ratio in the measured irradiance for each instrument as a function of spectral class. For K-type stars, which have the least spectral change over the DNB wavelength range, we measure a calibration bias between the SNPP and N20 DNB HGS of approximately 4%, which is stable over the duration of the N20 mission.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2959
Permanent link to this record
 

 
Author Ngadiman, N. F., Shariff, N. N. M., & Hamidi, Z. S.
Title Sensor Technology for Night Sky Brightness Measurements in Malaysia Type Journal Article
Year 2020 Publication International Journal of Recent Technology and Engineering (IJRTE) Abbreviated Journal
Volume 8 Issue 6 Pages
Keywords Instrumentation
Abstract Artificial light at night is apparently showing to be a major contributor to the increase of sky brightness at night. The natural darkness in large regions of the world including Malaysia currently is at risk. Hence, some Night Sky Brightness (NSB) measurements in Malaysia were conducted by using several types of light sensors in order to serve quantitative data and spread awareness on this issue. This paper aims to analyze the sensor technology that have been used in night sky brightness measurement in Malaysia as well as to identify recent or significant advances and discoveries in this field of study. In this paper, the author adopted qualitative method through literature review from numerous conducted studies by other researchers in order to perceive better understanding on the use of dedicated light sensor in NSB related research. Starting from 2005 until now, it is noticeable that most of the light sensor used in the NSB studies in Malaysia was Sky Quality Meter (SQM) photometer, equipped with TSL237 sensor which has high irradiance responsivity 2.3kHz/(µW/cm2) @ λp = 524nm and 5 Milion:1 input dynamic range as well as able to sense down to 0.00002 Lux and has typical dark frequency down to 0.1 Hz. The result indicates the relative frequency of the SQM usage in NSB studies was 76% compared to PBM, APC, PMT and CDD of only 4% respectively. SQM has always been the choice of researchers in Malaysia to carry out their sky brightness measurements due to user-friendly implementation besides its reliable data obtained from TSL237 sensor which capable to convert the light directly to frequency without an amplifier or data converter. Thus, the nonlinearities and voltage offsets in the data can be circumvented. A fairly good development of sensor that have been utilized in NSB studies can be discerned patently besides NSB studies will always look forward for a better sensor to further enhance the efforts to map sky brightness for preserving the potential dark sky areas for the sake of astronomy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2968
Permanent link to this record
 

 
Author Ribas, S. J.; Aubé, M.; Bará, S.; Bouroussis, C.; Canal-Domingo, R.; Espey, B.; Hänel, A.; Jechow, A.; Kolláth, Z.; Marti, G.; Massana, P.; Schmidt, W.; Spoelstra, H.; Wuchterl, G.; Zamorano, J.; Kyba, C.
Title Report of the 2016 STARS4ALL/LoNNe Intercomparison Campaign Type Report
Year 2017 Publication Abbreviated Journal
Volume Issue Pages
Keywords Skyglow; Instrumentation
Abstract The 2016 LoNNe (Loss of the Night Network) intercomparison campaign is the fourth of four campaigns planned during EU COST Action ES1204. The first campaign took place in 2013 in Lastovo, Croatia, the second in Madrid, Spain (Bará et al 2015), the third in Torniella and Florence, Italy (Kyba et al 2015a). The 2016 campaign took place at the Parc Astronòmic Montsec (PAM). The campaign continued the strategy of taking measurements at multiple sites, this year with a main fixed site and then excursions to other sites. The goals of the campaigns included:

● Understanding the difference between extinction measurements made by DSLR photometry and classical astronomical (telescope) photometry, and also understanding the relation between extinction and sky brightness at these two sites.

● Examining the difference in radiance measured with the mosaic technique of the US National Parks Service camera compared to all-sky fisheye imagery

● Examining the relationships between all-sky and zenith radiance reported by different instruments

● Quantifying the sky brightnes at the sites, including full zenith spectral radiance at selected locations

● Measuring the systematic uncertainty on handheld SQM observations due to unit-to-unit differences
Address
Corporate Author Thesis
Publisher GFZ Data Services Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3057
Permanent link to this record
 

 
Author Elvey, C.T.; Roach, F.E.
Title A Photoelectric Study of the Light from the Night Sky Type Journal Article
Year 1937 Publication The Astrophysical Journal Abbreviated Journal ApJL
Volume 85 Issue Pages 213
Keywords Instrumentation; Sky Brightness
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0004-637X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2399
Permanent link to this record
 

 
Author Gaydecki, P.
Title Automated moth flight analysis in the vicinity of artificial light Type Journal Article
Year 2018 Publication Bulletin of Entomological Research Abbreviated Journal Bull Entomol Res
Volume 109 Issue 1 Pages 127-140
Keywords Instrumentation; Animals
Abstract Instrumentation and software for the automated analysis of insect flight trajectories is described, intended for quantifying the behavioural dynamics of moths in the vicinity of artificial light. For its time, this moth imaging system was relatively advanced and revealed hitherto undocumented insights into moth flight behaviour. The illumination source comprised a 125 W mercury vapour light, operating in the visible and near ultraviolet wavelengths, mounted on top of a mobile telescopic mast at heights of 5 and 7.1 m, depending upon the experiment. Moths were imaged in early September, at night and in field conditions, using a ground level video camera with associated optics including a heated steering mirror, wide angle lens and an electronic image intensifier. Moth flight coordinates were recorded at a rate of 50 images per second (fields) and transferred to a computer using a light pen (the only non-automated operation in the processing sequence). Software extracted ground speed vectors and, by instantaneous subtraction of wind speed data supplied by fast-response anemometers, the airspeed vectors. Accumulated density profiles of the track data revealed that moths spend most of their time at a radius of between 40 and 50 cm from the source, and rarely fly directly above it, from close range. Furthermore, the proportion of insects caught by the trap as a proportion of the number influenced by the light (and within the field of view of the camera) was very low; of 1600 individual tracks recorded over five nights, a total of only 12 were caught. Although trap efficiency is strongly dependent on trap height, time of night, season, moonlight and weather, the data analysis confirmed that moths do not exhibit straightforward positive phototaxis. In general, trajectory patterns become more complex with reduced distance from the illumination, with higher recorded values of speeds and angular velocities. However, these characteristics are further qualified by the direction of travel of the insect; the highest accelerations tended to occur when the insect was at close range, but moving away from the source. Rather than manifesting a simple positive phototaxis, the trajectories were suggestive of disorientation. Based on the data and the complex behavioural response, mathematical models were developed that described ideal density distribution in calm air and light wind speed conditions. The models did not offer a physiological hypothesis regarding the behavioural changes, but rather were tools for quantification and prediction. Since the time that the system was developed, instrumentation, computers and software have advanced considerably, allowing much more to be achieved at a small fraction of the original cost. Nevertheless, the analytical tools remain useful for automated trajectory analysis of airborne insects.
Address School of Electrical and Electronic Engineering, University of Manchester,Manchester M13 9PL,UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0007-4853 ISBN Medium
Area Expedition Conference
Notes PMID:29745349 Approved no
Call Number GFZ @ kyba @ Serial 1895
Permanent link to this record