|   | 
Details
   web
Records
Author Wilson, T., & Xiong, X.
Title Intercomparison of the SNPP and NOAA-20 VIIRS DNB High-Gain Stage Using Observations of Bright Stars Type Journal Article
Year 2020 Publication IEEE Transactions on Geoscience and Remote Sensing Abbreviated Journal
Volume Issue (up) Pages 1-8
Keywords Remote Sensing; Instrumentation
Abstract The Visible Infrared Imaging Radiometer Suite (VIIRS) on board the Suomi-NPP (SNPP) and NOAA-20 (N20) spacecrafts is a multispectral Earth-observing instrument with bands covering wavelengths from visible to long-wave infrared. Among these bands is a panchromatic day/night band (DNB) with a broad spectral response ranging from 500 to 900 nm, and a high dynamic range spanning over seven orders of magnitude, allowing for observations to take place during both daytime and nighttime. The DNB operates at three gain levels, with low- and mid-gain stages and two high-gain stages (HGSs). The HGS is capable of detecting dim city lights during Earth-view observations at night as well as bright stars through the instrument space-view port. Since SNPP and N20 are at opposite points of the same orbit, each VIIRS instrument is able to observe the same stars with the DNB in successive orbits. This will allow us to make a direct comparison of the relative calibration of each instrument using stars over a range of spectral classes. In this article, we develop methodology for accurately identifying target stars in order to make proper comparisons between the DNB HGS of each instrument. We then take observations from multiple stars in order to compute the ratio in the measured irradiance for each instrument as a function of spectral class. For K-type stars, which have the least spectral change over the DNB wavelength range, we measure a calibration bias between the SNPP and N20 DNB HGS of approximately 4%, which is stable over the duration of the N20 mission.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2959
Permanent link to this record
 

 
Author Kolláth, K.; Kolláth, Z.
Title On the feasibility of using ceilometer backscatter profile as input data for skyglow simulation Type Journal Article
Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume in press Issue (up) Pages in press
Keywords Skyglow; Instrumentation
Abstract Atmospheric conditions can significantly affect the sky brightness originating from artificial lights. Previous works studied the cloudiness, cloud base height, optical depth of cloud, aerosol optical depth and aerosol scale height as atmospheric parameters affecting night sky brightness. Instead of using these parameters as a simplification of the real cloud and aerosol profile, we processed the raw backscatter data of a laser ceilometer instrument. Sky brightness was obtained from camera images available at the same meteorological observation site. Case studies are shown in selected cases, where we analyzed the correspondences with the backscatter data and the camera images. We performed Monte Carlo simulations with the dominant light sources to verify the numerical predictions of sky radiances. Although the limitations of the ceilometer device to obtain optical properties of the atmosphere, ceilometers provide valuable source of data for evaluation of the light pollution measurements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2994
Permanent link to this record
 

 
Author Bouroussis, C.A.; Topalis, F.V.
Title Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems – The concept of the drone-gonio-photometer Type Journal Article
Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 253 Issue (up) Pages 107155
Keywords Instrumentation; Lighting
Abstract This paper presents the ongoing work of the lighting laboratory to develop a standardized method for the measurement of several types of lighting installations using unmanned aircraft systems. The technology of unmanned aircraft systems can incorporate multiple types of sensors and can be programmed to fly in predefined areas and routes in order to perform complex measurements with limited human intervention. This technology provides the freedom of measurements from several angular positions and altitudes in a fast, easy, accurate and repeatable way. The overall aim of this work is to assess the lighting installations, not only against the applicable lighting standards but also to investigate and reveal issues related to light pollution and obtrusive lighting. The latter are issues that in most cases are neglected due to the lack of standardized methods of calculation and measurement. Current assessment methods require illuminance or luminance measurements of horizontal and vertical surfaces generally from the ground. The proposed approach provides a holistic three-dimensional evaluation of the lighting installations beyond the common methods and geometries and opens the discussion for future update of the relevant standards on outdoor lighting. In the scope of this paper, several proof-of-concept cases are presented.
Address Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, 15780, Zografou, Athens, Greece; bouroussis(at)gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2996
Permanent link to this record
 

 
Author Kolláth, Z.; Cool, A.; Jechow, A.; Kolláth, K.; Száz, D.; Tong, K.P.
Title Introducing the Dark Sky Unit for multi-spectral measurement of the night sky quality with commercial digital cameras Type Journal Article
Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 253 Issue (up) Pages 107162
Keywords Skyglow; Instrumentation; Measurement; light pollution; Radiometry
Abstract Multi-spectral imaging radiometry of the night sky provides essential information on light pollution (skyglow) and sky quality. However, due to the different spectral sensitivity of the devices used for light pollution measurement, the comparison of different surveys is not always trivial. In addition to the differences between measurement approaches, there is a strong variation in natural sky radiance due to the changes of airglow. Thus, especially at dark locations, the classical measurement methods (such as Sky Quality Meters) fail to provide consistent results. In this paper, we show how to make better use of the multi-spectral capabilities of commercial digital cameras and show their application for airglow analysis. We further recommend a novel sky quality metric the ”Dark Sky Unit”, based on an easily usable and SI traceable unit. This unit is a natural choice for consistent, digital camera-based measurements. We also present our camera system calibration methodology for use with the introduced metrics.
Address ELTE BDPK, Szombathely, Department of Physics, Hungary; zkollath(at)gmail.com
Corporate Author Thesis
Publisher Elsever Place of Publication Elsevier Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2998
Permanent link to this record
 

 
Author Li, X.; Levin, N.; Xie, J.; Li, D.
Title Monitoring hourly night-time light by an unmanned aerial vehicle and its implications to satellite remote sensing Type Journal Article
Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 247 Issue (up) Pages in press
Keywords Remote Sensing; Skyglow; Instrumentation
Abstract Satellite-observed night-time light in urban areas has been widely used as an indicator for socioeconomic development and light pollution. Up to present, the diurnal dynamics of city light during the night, which are important to understand the nature of human activity and the underlying variables explaining night-time brightness, have hardly been investigated by remote sensing techniques due to limitation of the revisit time and spatial resolution of available satellites. In this study, we employed a consumer-grade unmanned aerial vehicle (UAV) to monitor city light in a study area located in Wuhan City, China, from 8:08 PM, April 15, 2019 to 5:08 AM, April 16, 2019, with an hourly temporal resolution. By using three ground-based Sky Quality Meters (SQMs), we found that the UAV-recorded light brightness was consistent with the ground luminous intensity measured by the SQMs in both the spatial (R2 = 0.72) and temporal dimensions (R2 > 0.94), and that the average city light brightness was consistent with the sky brightness in the temporal dimension (R2 = 0.98), indicating that UAV images can reliably monitor the city's night-time brightness. The temporal analysis showed that different locations had different patterns of temporal changes in their night-time brightness, implying that inter-calibration of two kinds of satellite images with different overpass times would be a challenge. Combining an urban function map of 18 classes and the hourly UAV images, we found that urban functions differed in their temporal light dynamics. For example, the outdoor sports field lost 97.28% of its measured brightness between 8: 08 PM – 4:05 AM, while an administrative building only lost 4.56%, and the entire study area lost 61.86% of its total brightness. Within our study area, the period between 9:06 PM and 10:05 PM was the period with largest amount of light loss. The spectral analysis we conducted showed that city light colors were different in some urban functions, with the major road being the reddest region at 8:08 PM and becoming even redder at 4:05 AM. This preliminary study indicates that UAVs are a good tool to investigate city light at night, and that city light is very complex in both of the temporal and spatial dimensions, requiring comprehensive investigation using more advanced UAV techniques, and emphasizing the need for geostationary platforms for night-time light sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3014
Permanent link to this record