|   | 
Details
   web
Records
Author Tabaka, P.
Title Pilot Measurement of Illuminance in the Context of Light Pollution Performed with an Unmanned Aerial Vehicle Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue (up) 13 Pages 2124
Keywords Instrumentation; Remote Sensing
Abstract This article presents the methodology and results of pilot field illuminance measurements using an unmanned aerial vehicle (UAV). The main goal of the study was to quantify the luminous flux emitted in the upper hemisphere (toward the sky) based on obtained measurement data. The luminous flux emitted toward the sky is the source of undesirable light pollution. For test purposes, a height-adjustable mobile park lantern was constructed, at the top of which any type of luminaire can be installed. In the pilot measurements, two real opal sphere-type luminaires were considered. The lantern was situated in an open area located away from a large city agglomeration. To determine the unusable luminous flux, illuminance was measured, placing the necessary measuring equipment on board a UAV. The measurements were supplemented with the registration of illuminance on the ground upon which the lantern was installed. Based on these data, the useful luminous flux was calculated. The findings show that UAVs may be successfully used for the assessment of the influence of lighting on the light pollution effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3040
Permanent link to this record
 

 
Author Burggraaff, O., Schmidt, N., Zamorano, J., Pauly, K., Pascual, S., Tapia, C., Spyrakos, E., & Snik, F.
Title Standardized spectral and radiometric calibration of consumer cameras Type Journal Article
Year 2019 Publication Optical Express Abbreviated Journal
Volume 27 Issue (up) 14 Pages 19075-19101
Keywords Instrumentation
Abstract Consumer cameras, particularly onboard smartphones and UAVs, are now commonly used as scientific instruments. However, their data processing pipelines are not optimized for quantitative radiometry and their calibration is more complex than that of scientific cameras. The lack of a standardized calibration methodology limits the interoperability between devices and, in the ever-changing market, ultimately the lifespan of projects using them. We present a standardized methodology and database (SPECTACLE) for spectral and radiometric calibrations of consumer cameras, including linearity, bias variations, read-out noise, dark current, ISO speed and gain, flat-field, and RGB spectral response. This includes golden standard ground-truth methods and do-it-yourself methods suitable for non-experts. Applying this methodology to seven popular cameras, we found high linearity in RAW but not JPEG data, inter-pixel gain variations >400% correlated with large-scale bias and read-out noise patterns, non-trivial ISO speed normalization functions, flat-field correction factors varying by up to 2.79 over the field of view, and both similarities and differences in spectral response. Moreover, these results differed wildly between camera models, highlighting the importance of standardization and a centralized database.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2652
Permanent link to this record
 

 
Author Wang, G., Wang, S., Zhang, L., Sun, F., Yan, F., & Yang, X.
Title A New Light Control Method with Charge Induction of Moving Target Type Journal Article
Year 2019 Publication IEEE Sensors Journal Abbreviated Journal
Volume 19 Issue (up) 16 Pages
Keywords Lighting; Instrumentation
Abstract Intelligent lamp control system has been widely studied all over the world because of its energy saving and social effect. In this paper, a new intelligent lamp control method based on charge induction for moving target is proposed. The detection model is established with the surface charge induction and verified by a luggage detection experiment. The intelligent lamp control system using the detection method is carried out. The performance of the system demonstrates that the proposed method can detect the moving target at any orientation whatever with or without occlusion and the detection distance can reach more than 3 m for the pedestrian.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2470
Permanent link to this record
 

 
Author Lee, S.; Cao, C.
Title Soumi NPP VIIRS Day/Night Band Stray Light Characterization and Correction Using Calibration View Data Type Journal Article
Year 2016 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 8 Issue (up) 2 Pages 138
Keywords Instrumentation
Abstract The Soumi NPP VIIRS Day/Night Band (DNB) nighttime imagery quality is affected by stray light contamination. In this study, we examined the relationship between the Earth scene stray light and the signals in VIIRS’s calibrators to better understand stray light characteristics and to improve upon the current correction method. Our analyses showed the calibrator signal to be highly predictive of Earth scene stray light and can provide additional stray light characteristics that are difficult to obtain from Earth scene data alone. In the current stray light correction regions (mid-to-high latitude), the stray light onset angles can be tracked by calibration view data to reduce correction biases. In the southern hemisphere, it is possible to identify the angular extent of the additional stray light feature in the calibration view data and develop a revised correction method to remove the additional stray light occurring during the southern hemisphere springtime. Outside of current stray light correction region, the analysis of calibration view data indicated occasional stray light contamination at low latitude and possible background biases caused by Moon illumination. As stray light affects a significant portion of nighttime scenes, further refinement in characterization and correction is important to ensure VIIRS DNB imagery quality for Soumi NPP and future missions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1378
Permanent link to this record
 

 
Author Bará, S.
Title Variations on a classical theme: On the formal relationship between magnitudes per square arcsecond and luminance Type Journal Article
Year 2017 Publication International Journal of Sustainable Lighting Abbreviated Journal Intl J of Sustainable Lighting
Volume 19 Issue (up) 2 Pages 77
Keywords Instrumentation; skyglow; luminance; magnitude; sky brigthness; photometry
Abstract The formal link between magnitudes per square arcsecond and luminance is discussed in this paper. Directly related to the human visual system, luminance is defined in terms of the spectral radiance of the source, weighted by the CIE V(l) luminous efficiency function, and scaled by the 683 lm/W luminous efficacy constant. In consequence, any exact and spectrum-independent relationship between luminance and magnitudes per square arcsecond requires that the last ones be measured precisely in the CIE V(l) band. The luminance value corresponding to mVC=0 (zero-point of the CIE V(l) magnitude scale) depends on the reference source chosen for the definition of the magnitude system. Using absolute AB magnitudes, the zero point luminance of the CIE V(l) photometric band is 10.96 x 104 cd·m-2.
Address Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2586-1247 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2162
Permanent link to this record