toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jechow, A.; Kolláth, Z.; Lerner, A.; Hänel, A.; Shashar, N.; Hölker, F.; Kyba, C.C.M. openurl 
  Title Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat–A Proof of Concept Type Journal Article
  Year 2017 Publication International Journal of Sustainable Lighting Abbreviated Journal  
  Volume 19 Issue 1 Pages 15-25  
  Keywords Skyglow; Instrumentation  
  Abstract Near all-sky imaging photometry was performed from a boat on the Gulf of Aqaba to measure the night sky brightness in a coastal environment. The boat was not anchored, and therefore drifted and rocked. The camera was mounted on a tripod without any inertia/motion stabilization. A commercial digital single lens reflex (DSLR) camera and fisheye lens were used with ISO setting of 6400, with the exposure time varied between 0.5 s and 5 s. We find that despite movement of the vessel the measurements produce quantitatively comparable results apart from saturation effects. We discuss the potential and limitations of this method for mapping light pollution in marine and freshwater systems. This work represents the proof of concept that all-sky photometry with a commercial DSLR camera is a viable tool to determine light pollution in an ecological context from a moving boat.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2151  
Permanent link to this record
 

 
Author Sánchez de Miguel, A.; Kyba, C.C.M.; Aubé, M.; Zamorano, J.; Cardiel, N.; Tapia, C.; Bennie, J.; Gaston, K.J. url  doi
openurl 
  Title Colour remote sensing of the impact of artificial light at night (I): The potential of the International Space Station and other DSLR-based platforms Type Journal Article
  Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 224 Issue Pages 92-103  
  Keywords Remote Sensing; Instrumentation  
  Abstract Sensors on remote sensing satellites have provided useful tools for evaluation of the environmental impacts of nighttime artificial light pollution. However, due to their panchromatic nature, the data available from these sensors (VIIRS/DNB and DMSP/OLS) has a limited capacity accurately to assess this impact. Moreover, in some cases, recorded variations can be misleading. Until new satellite platforms and sensors are available, only nighttime images taken with DSLR cameras from the International Space Station (ISS), airplanes, balloons or other such platforms can provide the required information. Here we describe a theoretical approach using colour-colour diagrams to analyse images taken by astronauts on the ISS to estimate spatial and temporal variation in the spectrum of artificial lighting emissions. We then evaluate how this information can be used to determine effects on some key environmental indices: photopic vision, the Melatonin Suppression Index, the Star Light Index, the Induced Photosynthesis Index, production of NO2-NO radicals, energy efficiency and CO2 emissions, and Correlated Colour Temperature. Finally, we use the city of Milan as a worked example of the approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2189  
Permanent link to this record
 

 
Author Li, X.; Li, X.; Li, D.; He, X.; Jendryke, M. url  doi
openurl 
  Title A preliminary investigation of Luojia-1 night-time light imagery Type Journal Article
  Year 2019 Publication Remote Sensing Letters Abbreviated Journal Remote Sensing Letters  
  Volume 10 Issue 6 Pages 526-535  
  Keywords Remote Sensing; Instrumentation  
  Abstract Launched on 2 June 2018, Luojia-1 satellite records night-time light imagery at 130 m resolution, which is higher than most of the existing night-time light images to date. This study evaluated radiometric and spatial properties of the Luojia-1 satellite imagery for cities of Los Angeles, Wuhan and Rome as well as the change detection capability for Zunyi city. For the radiometric property, the analysis shows that the Luojia-1 images correlate well with the radiance of the Visible Infrared Imaging Radiometer Suite (VIIRS)’s Day and Night Band (DNB), and that the Luojia-1 images have a wider range of radiance values, as well as higher radiance values (e.g., 40%–90% higher) than the VIIRS DNB images. Using wavelet decomposition and change detection analysis to evaluate spatial property and change detection capability, it was found that the Luojia-1 images provide abundant spatial detail information, with about 20%–54% energy of wavelet component of the images stored in 100–400 m resolutions, and they can help to track the electrification of new roads and buildings at a fine resolution. This study shows that the Luojia-1 images are an effective data source for analysing spatiotemporal distribution of night-time light and its associated socioeconomic attributes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2150-704X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2199  
Permanent link to this record
 

 
Author Tauc, M.J.; Fristrup, K.M.; Repasky, K.S.; Shaw, J.A. url  doi
openurl 
  Title Field demonstration of a wing-beat modulation lidar for the 3D mapping of flying insects Type Journal Article
  Year 2019 Publication OSA Continuum Abbreviated Journal OSA Continuum  
  Volume 2 Issue 2 Pages 332  
  Keywords Instrumentation; Animals  
  Abstract We describe a wing-beat modulation lidar system designed for the 3D mapping of flying insects in ecological or entomological studies. To better understand the signals from this instrument, we analyzed simulated signals to identify how they were affected by various imperfections, such as variations in the spacing and amplitude of each individual wing-beat reflection. In addition, a radiometric model was used to estimate signal-to-noise ratio to gain insight into the relationships between the optical system design and insect parameters (e.g., wing size, reflectivity, or diffusivity).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2578-7519 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2209  
Permanent link to this record
 

 
Author Zheng, Q.; Weng, Q.; Wang, K. url  doi
openurl 
  Title Developing a new cross-sensor calibration model for DMSP-OLS and Suomi-NPP VIIRS night-light imageries Type Journal Article
  Year 2019 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing  
  Volume 153 Issue Pages 36-47  
  Keywords Remote Sensing; Instrumentation  
  Abstract Night-time light (NTL) data provides a great opportunity to monitor human activities and settlements. Currently, global-scale NTL data are acquired by two satellite sensors, i.e., DMSP-OLS and VIIRS, but the data collected by the satellites are not compatible. To address this issue, we proposed a method for generating long-term and consistent NTL data. First, a logistic model was employed to estimate and smooth the missing DMSP-OLS data. Second, the Lomb-Scargle Periodogram technique was used to statistically examine the presence of seasonality of monthly VIIRS time series. The seasonal effect, noisy and unstable observations in VIIRS were eliminated by the BFAST time-series decomposition algorithm. Then, we proposed a residuals corrected geographically weighted regression model (GWRc) to generate DMSP-like VIIRS data. A consistent NTL time series from 1996 to 2017 was formed by combining the DMSP-OLS and synthetic DMSP-like VIIRS data. Our assessment shows that the proposed GWRc model outperformed existing methods (e.g., power function model), yielding a lower regression RMSE (6.36), a significantly improved pixel-level NTL intensity consistency (SNDI = 82.73, R2 = 0.986) and provided more coherent results when used for urban area extraction. The proposed method can be used to extend NTL time series, and in conjunction with the upcoming yearly VIIRS data and Black Marble daily VIIRS data, it is possible to support long-term NTL-based studies such as monitoring light pollution in ecosystems, and mapping human activities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (up) Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-2716 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2361  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: