toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bará, S. url  doi
openurl 
  Title Variations on a classical theme: On the formal relationship between magnitudes per square arcsecond and luminance Type Journal Article
  Year 2017 Publication International Journal of Sustainable Lighting Abbreviated Journal Intl J of Sustainable Lighting  
  Volume 19 Issue 2 Pages 77  
  Keywords Instrumentation; skyglow; luminance; magnitude; sky brigthness; photometry  
  Abstract The formal link between magnitudes per square arcsecond and luminance is discussed in this paper. Directly related to the human visual system, luminance is defined in terms of the spectral radiance of the source, weighted by the CIE V(l) luminous efficiency function, and scaled by the 683 lm/W luminous efficacy constant. In consequence, any exact and spectrum-independent relationship between luminance and magnitudes per square arcsecond requires that the last ones be measured precisely in the CIE V(l) band. The luminance value corresponding to mVC=0 (zero-point of the CIE V(l) magnitude scale) depends on the reference source chosen for the definition of the magnitude system. Using absolute AB magnitudes, the zero point luminance of the CIE V(l) photometric band is 10.96 x 104 cd·m-2.  
  Address Departamento de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2586-1247 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial (down) 2162  
Permanent link to this record
 

 
Author Jechow, A.; Kolláth, Z.; Lerner, A.; Hänel, A.; Shashar, N.; Hölker, F.; Kyba, C.C.M. openurl 
  Title Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat–A Proof of Concept Type Journal Article
  Year 2017 Publication International Journal of Sustainable Lighting Abbreviated Journal  
  Volume 19 Issue 1 Pages 15-25  
  Keywords Skyglow; Instrumentation  
  Abstract Near all-sky imaging photometry was performed from a boat on the Gulf of Aqaba to measure the night sky brightness in a coastal environment. The boat was not anchored, and therefore drifted and rocked. The camera was mounted on a tripod without any inertia/motion stabilization. A commercial digital single lens reflex (DSLR) camera and fisheye lens were used with ISO setting of 6400, with the exposure time varied between 0.5 s and 5 s. We find that despite movement of the vessel the measurements produce quantitatively comparable results apart from saturation effects. We discuss the potential and limitations of this method for mapping light pollution in marine and freshwater systems. This work represents the proof of concept that all-sky photometry with a commercial DSLR camera is a viable tool to determine light pollution in an ecological context from a moving boat.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2151  
Permanent link to this record
 

 
Author Coesfeld, J.; Anderson, S.; Baugh, K.; Elvidge, C.; Schernthanner, H.; Kyba, C. url  doi
openurl 
  Title Variation of Individual Location Radiance in VIIRS DNB Monthly Composite Images Type Journal Article
  Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 10 Issue 12 Pages 1964  
  Keywords Remote Sensing; Instrumentation  
  Abstract With the growing size and use of night light time series from the Visible Infrared Imaging Radiometer Suite Day/Night Band (DNB), it is important to understand the stability of the dataset. All satellites observe differences in pixel values during repeat observations. In the case of night light data, these changes can be due to both environmental effects and changes in light emission. Here we examine the stability of individual locations of particular large scale light sources (e.g., airports and prisons) in the monthly composites of DNB data from April 2012 to September 2017. The radiances for individual pixels of most large light emitters are approximately normally distributed, with a standard deviation of typically 15–20% of the mean. Greenhouses and flares, however, are not stable sources. We observe geospatial autocorrelation in the monthly variations for nearby sites, while the correlation for sites separated by large distances is small. This suggests that local factors contribute most to the variation in the pixel radiances and furthermore that averaging radiances over large areas will reduce the total variation. A better understanding of the causes of temporal variation would improve the sensitivity of DNB to lighting changes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2129  
Permanent link to this record
 

 
Author Zhang, G.; Li, L.; Jiang, Y.; Shen, X.; Li, D. url  doi
openurl 
  Title On-Orbit Relative Radiometric Calibration of the Night-Time Sensor of the LuoJia1-01 Satellite Type Journal Article
  Year 2018 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 18 Issue 12 Pages  
  Keywords Instrumentation; Remote Sensing  
  Abstract The LuoJia1-01 satellite can acquire high-resolution, high-sensitivity nighttime light data for night remote sensing applications. LuoJia1-01 is equipped with a 4-megapixel CMOS sensor composed of 2048 x 2048 unique detectors that record weak nighttime light on Earth. Owing to minute variations in manufacturing and temporal degradation, each detector's behavior varies when exposed to uniform radiance, resulting in noticeable detector-level errors in the acquired imagery. Radiometric calibration helps to eliminate these detector-level errors. For the nighttime sensor of LuoJia1-01, it is difficult to directly use the nighttime light data to calibrate the detector-level errors, because at night there is no large-area uniform light source. This paper reports an on-orbit radiometric calibration method that uses daytime data to estimate the relative calibration coefficients for each detector in the LuoJia1-01 nighttime sensor, and uses the calibrated data to correct nighttime data. The image sensor has a high dynamic range (HDR) mode, which is optimized for day/night imaging applications. An HDR image can be constructed using low- and high-gain HDR images captured in HDR mode. Hence, a day-to-night radiometric reference transfer model, which uses daytime uniform calibration to calibrate the detector non-uniformity of the nighttime sensor, is herein built for LuoJia1-01. Owing to the lack of calibration equipment on-board LuoJia1-01, the dark current of the nighttime sensor is calibrated by collecting no-light desert images at new moon. The results show that in HDR mode (1) the root mean square of mean for each detector in low-gain (high-gain) images is better than 0.04 (0.07) in digital number (DN) after dark current correction; (2) the DN relationship between low- and high-gain images conforms to the quadratic polynomial mode; (3) streaking metrics are better than 0.2% after relative calibration; and (4) the nighttime sensor has the same relative correction parameters at different exposure times for the same gain parameters.  
  Address State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China. drli@whu.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30513817 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2125  
Permanent link to this record
 

 
Author Li, X.; Zhao, L.; Li, D.; Xu, H. url  doi
openurl 
  Title Mapping Urban Extent Using Luojia 1-01 Nighttime Light Imagery Type Journal Article
  Year 2018 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 18 Issue 11 Pages  
  Keywords Instrumentation; Remote Sensing  
  Abstract Luojia 1-01 satellite, launched on 2 June 2018, provides a new data source of nighttime light at 130 m resolution and shows potential for mapping urban extent. In this paper, using Luojia 1-01 and VIIRS nighttime light imagery, we compared several methods for extracting urban areas, including Human Settlement Index (HSI), Simple Thresholding Segmentation (STS) and SVM supervised classification. According to the accuracy assessment, the HSI method using LJ1-01 data had the best performance in urban extent extraction, which presented the largest Kappa Coefficient value, 0.834, among all the results. For the urban areas extracted by VIIRS based HSI method, the largest Kappa Coefficient value was 0.772. In contrast, the largest Kappa Coefficient values obtained by STS method were 0.79 and 0.7512 respectively when using LJ1-01 and VIIRS data, while for SVM method the values were 0.7829 and 0.7486 when using Landsat-LJ and Landsat-VIIRS composite data respectively. The experimented results demonstrated that the utilization of nighttime light imagery can largely improve the accuracy of urban extent extraction and LJ1-01 data, with a higher resolution and more abundant spatial information, can lead to better identification results than its predecessors.  
  Address Key Laboratory of the Ministry of Land and Resources for Law Evaluation Engineering, Wuhan 430074, China. xuhuimin1985_2008@163.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30380616 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2056  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: